skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the relationship between STEVE and SAID during three events observed by SuperDARN
The phenomenon known as strong thermal emission velocity enhancement (STEVE) is a narrow optical structure that may extend longitudinally for thousands of kilometers. Initially observed by amateur photographers, it has recently garnered researchers’ attention. STEVE has been associated with a rapid westward flow of ions in the ionosphere, known as subauroral ion drift (SAID). In this work, we investigate three occurrences of STEVE, using data from one of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) ground-based all-sky imagers (ASIs) located at Pinawa, Manitoba, and from the Super Dual Auroral Radar Network (SuperDARN). This approach allows us to verify the correlation between STEVE and SAID, as well as analyze the temporal variation of SAID observed during STEVE events. Our results suggest that the SAID activity starts before the STEVE, and the magnitude of the westward flow decreases as the STEVE progresses toward the end of its optical manifestation.  more » « less
Award ID(s):
2125323 1934997 1935110
PAR ID:
10559762
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
frontiers
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Volume:
11
ISSN:
2296-987X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA) satellite observations and ground‐based observations by the THEMIS all‐sky imagers (ASIs) and SuperDARN radars, we determine how the equatorward boundary locations of ring current ions and plasma sheet electrons at pre‐midnight relate to occurrence of strong thermal emission velocity enhancement (STEVE) and intense subauroral ion drifts (SAID) during substorms. We found that the STEVE events are associated with a sharper gradient of electron precipitating flux, lower precipitating ion flux, and a narrower (<1°) latitudinal gap between the equatorward boundaries of trapped ring current ions and precipitating plasma sheet electrons and narrower region‐2 field‐aligned currents (FACs) than for the non‐STEVE events. The narrow gap of the particle boundaries contains intense SAID, higher upflow velocity, lower trough density, and slightly higher electron temperature than those for the non‐STEVE events. The non‐STEVE substorms have much wider gaps between the trapped ions and precipitating electrons, and subauroral polarization streams (SAPS) do not show intense SAID. These results indicate that subauroral flows and downward FACs for the STEVE events can only flow within the latitudinally narrow subauroral low‐conductance region between the ion and electron boundaries, resulting in intense SAID and heating. During the non‐STEVE events, the SAPS flows can flow in the latitudinally wide region without forming intense SAID. 
    more » « less
  2. Abstract To understand magnetosphere‐ionosphere conditions that result in thermal emission velocity enhancement (STEVE) and subauroral ion drifts (SAID) during the substorm recovery phase, we present substorm aurora, particle injection, and current systems during two STEVE events. Those events are compared to substorm events with similar strength but without STEVE. We found that the substorm surge and intense upward currents for the events with STEVE reach the dusk, while those for the non‐STEVE substorms are localized around midnight. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite observations show that location of particle injection and fast plasma sheet flows for the STEVE events also shifts duskward. Electron injection is stronger and ion injection is weaker for the STEVE events compared to the non‐STEVE events. SAID are measured by Super Dual Auroral Radar Network during the STEVE events, but the non‐STEVE events only showed latitudinally wide subauroral polarization streams without SAID. To interpret the observations, Rice Convection Model (RCM) simulations with injection at premidnight and midnight have been conducted. The simulations successfully explain the stronger electron injection, weaker ion injection, and formation of SAID for injection at premidnight, because injected electrons reach the premidnight inner magnetosphere and form a narrower separation between the ion and electron inner boundaries. We suggest that substorms and particle injections extending far duskward away from midnight offer a condition for creating STEVE and SAID due to stronger electron injection to premidnight. The THEMIS all‐sky imager network identified the east‐west length of the STEVE arc to be ~1900 km (~2.5 h magnetic local time) and the duration to be 1–1.5 h. 
    more » « less
  3. Abstract Although Strong Thermal Emission Velocity Enhancement (STEVE) and subauroral ion drifts (SAID) are often considered in the context of geomagnetically disturbed times, we found that STEVE and SAID can occur even during quiet times. Quiet‐time STEVE has the same properties as substorm‐time STEVE, including its purple/mauve color and occurrence near the equatorward boundary of the pre‐midnight auroral oval. Quiet‐time STEVE and SAID emerged during a non‐substorm auroral intensification at or near the poleward boundary of the auroral oval followed by a streamer. Quiet‐time STEVE only lasted a few minutes but can reappear multiple times, and its latitude was much higher than substorm‐time STEVE due to the contracted auroral oval. The THEMIS satellites in the plasma sheet detected dipolarization fronts and fast flows associated with the auroral intensification, indicating that the transient energy release in the magnetotail was the source of quiet‐time STEVE and SAID. Particle injection was weaker and electron temperature was lower than the events without quiet‐time STEVE. The plasmapause extended beyond the geosynchronous orbit, and the ring current and tail current were weak. The interplanetary magnetic field (IMF)Bzwas close to zero, while the IMFBxwas dominant. We suggest that the small energy release in the quiet magnetosphere can significantly impact the flow and field‐aligned current system. 
    more » « less
  4. Abstract We utilized a 4K imaging to examine properties of fine‐scale structures of Strong Thermal Emission Velocity Enhancement (STEVE) near the magnetic zenith. Its high spatial (0.09 km at 200 km altitude) and temporal (24 Hz) resolution provided unprecedented details of fine‐scale structures in the subauroral ionosphere. Although the STEVE emission was seen as a homogeneous purple/mauve arc in the all‐sky images, the high‐speed imaging revealed that STEVE contained substantial multi‐scale structures. The characteristic wavelength and period were 12.4 ± 7.4 km and 1.4 ± 0.8 s, and they drifted westward at 8.9 ± 0.7 km/s. The speed is comparable to the reported magnitude of the intense subauroral ion drifts (SAID), suggesting that the fine‐scale structures are an optical manifestation of theE × Bdrift in the intense SAID. A spectral analysis identified multiple peaks at >10, 4, 2, 1.1, and <1/5 s period (>83, 33, 16, 9, and <1.7 km wavelength). Although most of the fine‐scale structures were stable during the drift across the field of view, some of the structures dynamically evolved within a few tens of km. The fine‐scale structures have a power law spectrum with a slope of −1, indicating that shear flow turbulence cascade structures to smaller scales. The fine‐scale structures pose a challenge to the subauroral ionosphere‐thermosphere interaction about how the ionosphere creates such fine‐scale structures and how the thermosphere reacts much faster than expected from a typical chemical reaction time. 
    more » « less
  5. Abstract Previous studies have shown that Strong Thermal Emission Velocity Enhancement (STEVE) events occur at the end of a prolonged substorm expansion phase. However, the connection between STEVE occurrence and substorms and the global high‐latitude ionospheric electrodynamics associated with the development of STEVE and non‐STEVE substorms are not yet well understood. The focus of this paper is to identify electrodynamics features that are unique to STEVE events through a comprehensive analysis of ionospheric convection patterns estimated from SuperDARN plasma drift and ground‐based magnetometer data using the Assimilative Mapping of Geospace Observations (AMGeO) procedure. Results from AMGeO are further analyzed using principal component analysis and superposed epoch analysis for 32 STEVE and 32 non‐STEVE substorm events. The analysis shows that the magnitude of cross‐polar cap potential drop is generally greater for STEVE events. In contrast to non‐STEVE substorms, the majority of STEVE events investigated are accompanied by with a pronounced extension of the dawn‐cell into the pre‐midnight subauroral latitudes, reminiscent of the Harang reversal convection feature where the eastward electrojet overlaps with the westward electrojet, which tends to prolong over substorm expansion and recovery phases. This is consistent with the presence of an enhanced subauroral electric field confirmed by previous STEVE studies. The global and localized features of high‐latitude ionospheric convection associated with optical STEVE events characterized in this paper provide important insights into cross‐scale magnetosphere‐ionosphere coupling mechanisms that differentiate STEVE events from non‐STEVE substorm events. 
    more » « less