skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 28, 2025

Title: In Silico Screening of CO 2 ‐Dipeptide Interactions for Bioinspired Carbon Capture
Abstract Carbon capture, sequestration and utilization offers a viable solution for reducing the total amount of atmospheric CO2concentrations. On an industrial scale, amine‐based solvents are extensively employed for CO2capture through chemisorption. Nevertheless, this method is marked by the high cost associated with solvent regeneration, high vapor pressure, and the corrosive and toxic attributes of by‐products, such as nitrosamines. An alternative approach is the biomimicry of sustainable materials that have strong affinity and selectivity for CO2. Bioinspired approaches, such as those based on naturally occurring amino acids, have been proposed for direct air capture methodologies. In this study, we present a database consisting of 960 dipeptide molecular structures, composed of the 20 naturally occurring amino acids. Those structures were analyzed with a novel computational workflow presented in this work that considers certain interaction sites that determine CO2affinity. Density functional theory (DFT) and symmetry‐adapted perturbation theory (SAPT) computations were performed for the calculation of CO2interaction energies, which allowed to limit our search space to 400 unique dipeptide structures. Using this computational workflow, we provide statistical insights into dipeptides and their affinity for CO2binding, as well as design principles that can further enhance CO2capture through cooperative binding.  more » « less
Award ID(s):
2143354
PAR ID:
10559765
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemPhysChem
Volume:
26
Issue:
4
ISSN:
1439-4235
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have performed a series of highly accurate calculations between CO2and the 20 naturally occurring amino acids for the investigation of the attractive noncovalent interactions. Different nucleophilic groups present in the amino acid structures were considered (α‐NH2, COOH, side groups), and the stronger binding sites were identified. A database of accurate reference interactions energies was compiled as computed by explicitly‐correlated coupled‐cluster singles‐and‐doubles, together with perturbative triples extrapolated to the complete‐basis‐set limit. The CCSD(F12)(T)/CBS reference values were used for comparing a variety of popular density functionals with different basis sets. Our results show that most density functionals with the triple‐zeta basis set def2‐TZVPP align with the CCSD(F12)(T)/CBS reference values, but errors range from 0.1 kcal/mol up to 1.0 kcal/mol. 
    more » « less
  2. Abstract Carbon dioxide capture technologies are set to play a vital role in mitigating the current climate crisis. Solid‐state17O NMR spectroscopy can provide key mechanistic insights that are crucial to effective sorbent development. In this work, we present the fundamental aspects and complexities for the study of hydroxide‐based CO2capture systems by17O NMR. We perform static density functional theory (DFT) NMR calculations to assign peaks for general hydroxide CO2capture products, finding that17O NMR can readily distinguish bicarbonate, carbonate and water species. However, in application to CO2binding in two test case hydroxide‐functionalised metal‐organic frameworks (MOFs) – MFU‐4l and KHCO3‐cyclodextrin‐MOF, we find that a dynamic treatment is necessary to obtain agreement between computational and experimental spectra. We therefore introduce a workflow that leverages machine‐learning force fields to capture dynamics across multiple chemical exchange regimes, providing a significant improvement on static DFT predictions. In MFU‐4l, we parameterise a two‐component dynamic motion of the bicarbonate motif involving a rapid carbonyl seesaw motion and intermediate hydroxyl proton hopping. For KHCO3‐CD‐MOF, we combined experimental and modelling approaches to propose a new mixed carbonate‐bicarbonate binding mechanism and thus, we open new avenues for the study and modelling of hydroxide‐based CO2capture materials by17O NMR. 
    more » « less
  3. Carboxylases are biocatalysts that capture and convert carbon dioxide (CO2) under mild conditions and atmospheric concentrations at a scale of more than 400 Gt annually. However, how these enzymes bind and control the gaseous CO2molecule during catalysis is only poorly understood. One of the most efficient classes of carboxylating enzymes are enoyl-CoA carboxylases/reductases (Ecrs), which outcompete the plant enzyme RuBisCO in catalytic efficiency and fidelity by more than an order of magnitude. Here we investigated the interactions of CO2within the active site of Ecr fromKitasatospora setae. Combining experimental biochemistry, protein crystallography, and advanced computer simulations we show that 4 amino acids, N81, F170, E171, and H365, are required to create a highly efficient CO2-fixing enzyme. Together, these 4 residues anchor and position the CO2molecule for the attack by a reactive enolate created during the catalytic cycle. Notably, a highly ordered water molecule plays an important role in an active site that is otherwise carefully shielded from water, which is detrimental to CO2fixation. Altogether, our study reveals unprecedented molecular details of selective CO2binding and C–C-bond formation during the catalytic cycle of nature’s most efficient CO2-fixing enzyme. This knowledge provides the basis for the future development of catalytic frameworks for the capture and conversion of CO2in biology and chemistry. 
    more » « less
  4. Rubisco is the enzyme responsible for CO2 fixation in nature, and it is activated by CO2 addition to the amine group of its lysine 201 side chain. We are designing rubisco-based biomimetic systems for reversible CO2 capture from ambient air. The oligopeptide biomimetic capture systems are employed in aqueous solution. To provide a solid foundation for the experimental solution-phase studies of the CO2 capture reaction, we report here the results of computational studies of the thermodynamics of CO2 capture by small alkylamines in aqueous solution. We studied CO2 addition to methyl-, ethyl-, propyl-, and butylamine with the consideration of the full conformational space for the amine and the corresponding carbamic acids and with the application of an accurate solvation model for the potential energy surface analyses. The reaction energies of the carbamylation reactions were determined based on just the most stable structures (MSS) and based on the ensemble energies computed with the Boltzmann distribution (BD), and it is found that ΔGBD ≈ ΔGMSS. The effect of the proper accounting for the molecular translational entropies in solution with the Wertz approach are much more significant, and the free energy of the capture reactions ΔWABD is more negative by 2.9 kcal/mol. Further accounting for volume effects in solution results in our best estimates for the reaction energies of the carbamylation reactions of ΔWABD = −5.4 kcal/mol. The overall difference is ΔGBD – ΔWABD = 2.4 kcal/mol for butylamine carbamylation. The full conformational space analyses inform about the conformational isomerizations of carbamic acids, and we determined the relevant rotational profiles and their transition-state structures. Our detailed studies emphasize that, more generally, solution-phase reaction energies should be evaluated with the Helmholtz free energy and can be affected substantially by solution effects on translational entropies. 
    more » « less
  5. This first-principles study investigates the interactions between amino acids and various types of montmorillonite clay surfaces, including a pristine surface, a surface with an oxygen vacancy, a surface with a silicon vacancy, and an Fe-doped surface. Our results show that all clay surfaces exhibit negative binding energies, indicating that the interaction between clay and amino acids is thermodynamically favorable. Among them, the surface with a Si vacancy displays the most negative binding energy, corresponding to the strongest interaction. We also examine the reactions between two alanine molecules to form a dipeptide molecule through the elimination of a water molecule in the absence of clay surfaces. The transition state search suggests that a proton transfer plays a critical role in the peptide bond formation based on structural and energetic features observed along the reaction path. Circular dichroism spectra computed for reactant, intermediate, and product states show distinct chiral signatures. Wave packet dynamics calculations indicate that quantum tunneling might be the mechanism underlying the reduced activation energy at low temperatures. These findings offer insight into the physicochemical processes at clay–amino acid interfaces and support the design of clay-based materials with applications in biotechnology and prebiotic chemistry. 
    more » « less