Abstract As global ocean monitoring programs and marine carbon dioxide removal methods expand, so does the need for scalable biogeochemical sensors. Currently, pH sensors are widely used to measure the ocean carbonate system on a variety of autonomous platforms. This paper assesses a commercially available optical pH sensor (optode) distributed by PyroScience GmbH for oceanographic applications. Results from this study show that the small, solid‐state pH optode demonstrates a precision of 0.001 pH and relative accuracy of 0.01 pH using an improved calibration routine outlined in the manuscript. A consistent pressure coefficient of 0.029 pH/1000 dbar is observed across multiple pH optodes tested in this study. The response time is investigated for standard and fast‐response versions over a range of temperatures and flow rates. Field deployments include direct comparison to ISFET‐based pH sensor packages for both moored and profiling platforms where the pH optodes experience sensor‐specific drift rates up to 0.006 pH d−1. In its current state, the pH optode potentially offers a viable and scalable option for short‐term field deployments and laboratory mesocosm studies, but not for long term deployments with no possibility for recalibration like on profiling floats.
more »
« less
This content will become publicly available on November 15, 2025
Oxygen optodes on oceanographic moorings: recommendations for deployment and in situ calibration
Increasing interest in the deployment of optical oxygen sensors, or optodes, on oceanographic moorings reflects the value of dissolved oxygen (DO) measurements in studies of physical and biogeochemical processes. Optodes are well-suited for moored applications but require careful, multi-step calibrations in the field to ensure data accuracy. Without a standardized set of protocols, this can be an obstacle for science teams lacking expertise in optode data processing and calibration. Here, we provide a set of recommendations for the deployment andin situcalibration of data from moored optodes, developed from our experience working with a set of 60 optodes deployed as part of the Gases in the Overturning and Horizontal circulation of the Subpolar North Atlantic Program (GOHSNAP). In particular, we detail the correction of drift in moored optodes, which occurs in two forms: (i) an irreversible, time-dependent drift that occurs during both optode storage and deployment and (ii) a reversible and pressure-and-time-dependent drift that is detectable in some optodes deployed at depths greater than 1,000 m. The latter is virtually unidentified in the literature yet appears to cause a low-bias in measured DO on the order of 1 to 3µmol kg−1per 1,000 m of depth, appearing as an exponential decay over the first days to months of deployment. Comparisons of our calibrated DO time series against serendipitous mid-deployment conductivity-temperature-depth (CTD)-DO profiles, as well as biogeochemical (BGC)-ARGO float profiles, suggest the protocols described here yield an accuracy in optode-DO of ∼1%, or approximately 2.5 to 3µmol kg−1. We intend this paper to serve as both documentation of the current best practices in the deployment of moored optodes as well as a guide for science teams seeking to collect high-quality moored oxygen data, regardless of expertise.
more »
« less
- PAR ID:
- 10559775
- Publisher / Repository:
- Frontiers in Marine Science
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 11
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Profiles of oxygen measurements from Argo profiling floats now vastly outnumber shipboard profiles. To correct for drift, float oxygen data are often initially adjusted to deployment casts, ship‐based climatologies, or, recently, measurements of atmospheric oxygen for in situ calibration. Air calibration enables accurate measurements in the upper ocean but may not provide similar accuracy at depth. Using a quality controlled shipboard data set, we find that the entire Argo oxygen data set is offset relative to shipboard measurements (float minus ship) at pressures of 1,450–2,000 db by a median of −1.9 μmol kg−1(mean ± SD of −1.9 ± 3.9, 95% confidence interval around the mean of {−2.2, −1.6}) and air‐calibrated floats are offset by −2.7 μmol kg−1(−3.0 ± 3.4 (CI95%{−3.7, −2.4}). The difference between float and shipboard oxygen is likely due to offsets in the float oxygen data and not oxygen changes at depth or biases in the shipboard data set. In addition to complicating the calculation of long‐term ocean oxygen changes, these float oxygen offsets impact the adjustment of float nitrate and pH measurements, therefore biasing important derived quantities such as the partial pressure of CO2(pCO2) and dissolved inorganic carbon. Correcting floats with air‐calibrated oxygen sensors for the float‐ship oxygen offsets alters float pH by a median of 3.0 mpH (3.1 ± 3.7) and float‐derived surfacepCO2by −3.2 μatm (−3.2 ± 3.9). This adjustment to floatpCO2represents half, or more, of the bias in float‐derivedpCO2reported in studies comparing floatpCO2to shipboardpCO2measurements.more » « less
-
Abstract Total alkalinity (AT) is an important parameter in the study of aquatic biogeochemical cycles, chemical speciation modeling, and many other important fundamental and anthropogenic (e.g., industrial) processes. We know little about its short‐term variability, however, because studies are based on traditional bottle sampling typically with coarse temporal resolution. In this work, an autonomous ATsensor, named the Submersible Autonomous Moored Instrument for Alkalinity (SAMI‐alk), was tested for freshwater applications. A comprehensive evaluation was conducted in the laboratory using freshwater standards. The results demonstrated excellent precision and accuracy (± 0.1%–0.4%) over the ATrange from 800 to 3000 μmol L−1. The system had no drift over an 8 d test and also demonstrated limited sensitivity to variations in temperature and ionic strength. Three SAMI‐alks were deployed for 23 d in the Clark Fork River, Montana, with a suite of other sensors. Compared to discrete samples, in situ accuracy for the three instruments were within 10–20 μmol L−1(0.3–0.6%), indicating good performance considering the challenges of in situ measurements in a high sediment, high biofouling riverine environment with large and rapid changes in temperature. These data reveal the complex ATdynamics that are typically missed by coarse sampling. We observed ATdiel cycles as large as 60–80 μmol L−1, as well as a rapid change caused by a runoff event. Significant errors in inorganic carbon system modeling result if these short‐term variations are not considered. This study demonstrates both the feasibility of the technology and importance of high‐resolution ATmeasurements.more » « less
-
Abstract In the Eastern Tropical North Pacific Oxygen Minimum Zone (ETNP‐OMZ), fish larvae undergo development amidst highly variable dissolved oxygen environments. As OMZs expand, understanding the implications of low‐oxygen environments on fish development becomes increasingly relevant for fisheries management and ecosystem modeling. Using horizontal zooplankton tows to track five oxygen levels (oxic [200 μmol/kg], hypoxic [100 μmol/kg] suboxic [10 μmol/kg], anoxic [<1 μmol/kg], and deep [10 μmol/kg at ~ 1000 m depth]), this study analyzed the three‐dimensional distribution of fish larvae and adults across the ETNP‐OMZ. Results revealed a wide midwater anoxic core, extending from Costa Rica to Baja California, that was almost devoid of fish larvae (< 1 larvae/1000 m3). Early larval stages primarily inhabited the oxic and hypoxic levels above the core, while postflexion and transformation stages occurred across a wider oxygen gradient, including the deep level below the anoxic core. Epipelagic species (e.g.,Auxissp.) were predominantly found in the surface oxic level, whereas coastal‐demersal species (e.g.,Bregmaceros bathymaster,Ophidionspp.) were prevalent in the hypoxic level above the core. Meso‐bathypelagic species (e.g.,Diogenichthys laternatus,Cyclothonespp.) were present throughout the study area, including below the anoxic core as transformation larvae and juveniles. These findings indicate that a vertical expansion of anoxic waters in OMZs could further constrain the habitat of epipelagic species, while also affecting the ontogenic vertical movements of meso‐bathypelagic species.more » « less
-
Abstract The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations.more » « less
An official website of the United States government
