IntroductionThe ‘social brain hypothesis’ proposes that brain development (particularly primates) is driven by social complexity, more than group size. Yet, small insects with minute brains are capable of the most complex social organization in animals - which warrants further attention. Research has focused on highly eusocial hymenopterans with extreme caste specialization and very large colony sizes that have passed social evolutionary points of no return. However, facultatively social insects that form small colonies (< 20 individuals) are likely to provide greater insight on brain selection at the origin-point of social group living. MethodsWe undertake the first neurobiological investigation of the facultatively social allodapine bees (Apidae: Xylocopinae: Allodapini), an exploratory study comparing single- and multi-female colonies ofExoneura angophorae. Using volume as a proxy for neural investment, we measured mushroom body calyces, optic lobes, antennal lobes and whole brains of queens, workers, and single-females to test three theories associating brain development with behavior: social brain hypothesis; distributed cognition hypothesis; sensory environment hypothesis. ResultsMushroom bodies were reduced in subordinate workers, but did not differ between queens and single-females. Workers had larger optic lobes than queens, but did not differ from single-females. There were no differences in antennal lobes or whole brain volume. DiscussionSocial caste, rather than multi-female versus single-female nesting, influenced mushroom body volume in this allodapine bee – counter to both social brain and distributed cognition theories and in alignment with halictine and ceratinine bees that also form small facultatively social colonies. Optic lobe enhancement is likely a response to dietary niche requirements for extra-nidal foraging behavior – which may be a highly plastic trait capable of rapid transition among allodapine and ceratinine bees that conforms with ecological intelligence hypotheses. These broad volumetric trends require further investigations on the functional neural circuitry involved in the aforementioned environmental contexts. 
                        more » 
                        « less   
                    
                            
                            Brain energy metabolism as an underlying basis of slow and fast cognitive phenotypes in honeybees
                        
                    
    
            ABSTRACT In the context of slow–fast behavioral variation, fast individuals are hypothesized to be those who prioritize speed over accuracy while slow individuals are those which do the opposite. Since energy metabolism is a critical component of neural and cognitive functioning, this predicts such differences in cognitive style to be reflected at the level of the brain. We tested this idea in honeybees by first classifying individuals into slow and fast cognitive phenotypes based on a learning assay and then measuring their brain respiration with high-resolution respirometry. Our results broadly show that inter-individual differences in cognition are reflected in differences in brain mass and accompanying energy use at the level of the brain and the whole animal. Larger brains had lower mass-specific energy usage and bees with larger brains had a higher metabolic rate. These differences in brain respiration and brain mass were, in turn, associated with cognitive differences, such that bees with larger brains were fast cognitive phenotypes whereas those with smaller brains were slow cognitive phenotypes. We discuss these results in the context of the role of energy in brain functioning and slow–fast decision making and speed accuracy trade-off. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2241230
- PAR ID:
- 10559782
- Publisher / Repository:
- Journal of Experimental Biology
- Date Published:
- Journal Name:
- Journal of Experimental Biology
- Volume:
- 227
- Issue:
- 17
- ISSN:
- 0022-0949
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The cognitive-buffer hypothesis proposes that more harsh and unpredictable environments favour animals with larger brains and resulting greater cognitive skills. Comparisons across taxa have supported the hypothesis, but it has rarely been tested within a species. We measured brain size, as inferred from head dimensions, for 1141 cliff swallow specimens collected in western Nebraska, 1982–2018. Cliff swallows starving to death during unusual late-spring cold snaps had significantly smaller brains than those dying from other causes, suggesting that brain size in this species can affect foraging success and that greater cognitive ability may confer advantages when conditions exceed normal environmental extremes. Brain size declined significantly with the size of the breeding colony from which a specimen came. Larger brains may be favoured in smaller colonies that represent more unpredictable and more challenging social environments where there is less public information on food sources and less collective vigilance against predators, even in relatively normal conditions. Our results provide intraspecific support for the cognitive-buffer hypothesis and emphasize the potential evolutionary impact of rare climatic events.more » « less
- 
            null (Ed.)Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the functional consequences of elevated mt mutation rates in some lineages remain underexplored. In the angiosperm genus Silene , closely related, ecologically similar species have either ‘fast' or ‘slow' mt-DNA mutation rates. Here, we investigated the functional consequences of elevated mt-DNA mutation rates on mt respiration profiles of Silene mitochondria. Overall levels of respiration were similar among Species. Fast species had lower respiration efficiency than slow species and relied up to 48% more on nuclear-encoded respiratory enzymes alternative oxidase (AOX) and accessory dehydrogenases (DHex), which participate in stress responses in plants. However, not all fast species showed these trends. Respiratory profiles of some enzymes were correlated, most notably AOX and DHex. We conclude that subtle differences in mt physiology among Silene lineages with dramatically different mt mutation rates may underly similar phenotypes at higher levels of biological organization, betraying the consequences of mt mutations.more » « less
- 
            Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains—relative to their body size—than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa.more » « less
- 
            Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    