skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Mathematics to Study How People Influence Each Other’s Opinions
People sometimes change their opinions when they discuss things with each other. Researchers can use mathematics to study opinion changes in simplifications of real-life situations. These simplified scenarios, which are examples of mathematical models, help researchers explore how people influence each other through their social interactions. In today’s digital world, these models can help us learn how to promote the spread of accurate information and reduce the spread of inaccurate information. In this article, we discuss a simple mathematical model of opinion changes that arise from social interactions. We briefly describe what opinion models can tell us and how researchers try to make them more realistic.  more » « less
Award ID(s):
1829071
PAR ID:
10559786
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontier for Young Minds
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
12
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The COVID-19 pandemic has led to significant changes in how people are currently living their lives. To determine how to best reduce the effects of the pandemic and start reopening communities, governments have used mathematical models of the spread of infectious diseases. In this article, we introduce a popular type of mathematical model of disease spread. We discuss how the results of analyzing mathematical models can influence government policies and human behavior, such as encouraging mask wearing and physical distancing to help slow the spread of a disease. 
    more » « less
  2. To effectively forage in natural environments, organisms must adapt to changes in the quality and yield of food sources across multiple timescales. Individuals foraging in groups act based on both their private observations and the opinions of their neighbours. How do these information sources interact in changing environments? We address this problem in the context of honeybee colonies whose inhibitory social interactions promote adaptivity and consensus needed for effective foraging. Individual and social interactions within a mathematical model of collective decisions shape the nutrition yield of a group foraging from feeders with temporally switching quality. Social interactions improve foraging from a single feeder if temporal switching is fast or feeder quality is low. When the colony chooses from multiple feeders, the most beneficial form of social interaction is direct switching, whereby bees flip the opinion of nest-mates foraging at lower-yielding feeders. Model linearization shows that effective social interactions increase the fraction of the colony at the correct feeder (consensus) and the rate at which bees reach that feeder (adaptivity). Our mathematical framework allows us to compare a suite of social inhibition mechanisms, suggesting experimental protocols for revealing effective colony foraging strategies in dynamic environments. 
    more » « less
  3. Cremonini, Marco (Ed.)
    Understanding the spread of false or dangerous beliefs—often called misinformation or disinformation—through a population has never seemed so urgent. Network science researchers have often taken a page from epidemiologists, and modeled the spread of false beliefs as similar to how a disease spreads through a social network. However, absent from those disease-inspired models is an internal model of an individual’s set of current beliefs, where cognitive science has increasingly documented how the interaction between mental models and incoming messages seems to be crucially important for their adoption or rejection. Some computational social science modelers analyze agent-based models where individuals do have simulated cognition, but they often lack the strengths of network science, namely in empirically-driven network structures. We introduce a cognitive cascade model that combines a network science belief cascade approach with an internal cognitive model of the individual agents as in opinion diffusion models as a public opinion diffusion (POD) model, adding media institutions as agents which begin opinion cascades. We show that the model, even with a very simplistic belief function to capture cognitive effects cited in disinformation study (dissonance and exposure), adds expressive power over existing cascade models. We conduct an analysis of the cognitive cascade model with our simple cognitive function across various graph topologies and institutional messaging patterns. We argue from our results that population-level aggregate outcomes of the model qualitatively match what has been reported in COVID-related public opinion polls, and that the model dynamics lend insights as to how to address the spread of problematic beliefs. The overall model sets up a framework with which social science misinformation researchers and computational opinion diffusion modelers can join forces to understand, and hopefully learn how to best counter, the spread of disinformation and “alternative facts.” 
    more » « less
  4. During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-physical-distancing — that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease. 
    more » « less
  5. Abstract Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM. 
    more » « less