The Randomized Kaczmarz method (RK) is a stochastic iterative method for solving linear systems that has recently grown in popularity due to its speed and low memory requirement. Selectable Set Randomized Kaczmarz is a variant of RK that leverages existing information about the Kaczmarz iterate to identify an adaptive “selectable set” and thus yields an improved convergence guarantee. In this article, we propose a general perspective for selectable set approaches and prove a convergence result for that framework. In addition, we define two specific selectable set sampling strategies that have competitive convergence guarantees to those of other variants of RK. One selectable set sampling strategy leverages information about the previous iterate, while the other leverages the orthogonality structure of the problem via the Gramian matrix. We complement our theoretical results with numerical experiments that compare our proposed rules with those existing in the literature.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
People sometimes change their opinions when they discuss things with each other. Researchers can use mathematics to study opinion changes in simplifications of real-life situations. These simplified scenarios, which are examples of mathematical models, help researchers explore how people influence each other through their social interactions. In today’s digital world, these models can help us learn how to promote the spread of accurate information and reduce the spread of inaccurate information. In this article, we discuss a simple mathematical model of opinion changes that arise from social interactions. We briefly describe what opinion models can tell us and how researchers try to make them more realistic.
Free, publicly-accessible full text available October 24, 2025 -
null (Ed.)An active area of research in computational science is the design of algorithms for solving the subgraph matching problem to find copies of a given template graph in a larger world graph. Prior works have largely addressed single-channel networks using a variety of approaches. We present a suite of filtering methods for subgraph isomorphisms for multiplex networks (with different types of edges between nodes and more than one edge within each channel type). We aim to understand the entire solution space rather than focusing on finding one isomorphism. Results are shown on several classes of datasets: (a) Sudoku puzzles mapped to the subgraph isomorphism problem, (b) ErdsRnyi multigraphs, (c) real-world datasets from Twitter and transportation networks, (d) synthetic data created for the DARPA MAA program.more » « less