Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure.
more »
« less
This content will become publicly available on November 28, 2025
Efficient and scalable wave function compression using corner hierarchical matrices
The exponential scaling of complete active space and full configuration interaction (CI) calculations limits the ability of quantum chemists to simulate the electronic structures of strongly correlated systems. Herein, we present corner hierarchically approximated CI (CHACI), an approach to wave function compression based on corner hierarchical matrices (CH-matrices)—a new variant of hierarchical matrices based on block-wise low-rank decomposition. By application to dodecacene, a strongly correlated molecule, we demonstrate that CH matrix compression provides superior compression compared to truncated global singular value decomposition. The compression ratio is shown to improve with increasing active space size. By comparison of several alternative schemes, we demonstrate that superior compression is achieved by (a) using a blocking approach that emphasizes the upper-left corner of the CI vector, (b) sorting the CI vector prior to compression, and (c) optimizing the rank of each block to maximize information density.
more »
« less
- Award ID(s):
- 1954519
- PAR ID:
- 10559961
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 20
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Matrices are exceptionally useful in various fields of study as they provide a convenient framework to organize and manipulate data in a structured manner. However, modern matrices can involve billions of elements, making their storage and processing quite demanding in terms of computational resources and memory usage. Although prohibitively large, such matrices are often approximately low rank. We propose an algorithm that exploits this structure to obtain a low rank decomposition of any matrix A as A≈LR, where L and R are the low rank factors. The total number of elements in L and R can be significantly less than that in A. Furthermore, the entries of L and R are quantized to low precision formats −− compressing A by giving us a low rank and low precision factorization. Our algorithm first computes an approximate basis of the range space of A by randomly sketching its columns, followed by a quantization of the vectors constituting this basis. It then computes approximate projections of the columns of A onto this quantized basis. We derive upper bounds on the approximation error of our algorithm, and analyze the impact of target rank and quantization bit-budget. The tradeoff between compression ratio and approximation accuracy allows for flexibility in choosing these parameters based on specific application requirements. We empirically demonstrate the efficacy of our algorithm in image compression, nearest neighbor classification of image and text embeddings, and compressing the layers of LlaMa-7b. Our results illustrate that we can achieve compression ratios as aggressive as one bit per matrix coordinate, all while surpassing or maintaining the performance of traditional compression techniques.more » « less
-
We study the joint low-rank factorization of the matrices X=[A B]G and Y=[A C]H, in which the columns of the shared factor matrix A correspond to vectorized rank-one matrices, the unshared factors B and C have full column rank, and the matrices G and H have full row rank. The objective is to find the shared factor A, given only X and Y. We first explain that if the matrix [A B C] has full column rank, then a basis for the column space of the shared factor matrix A can be obtained from the null space of the matrix [X Y]. This in turn implies that the problem of finding the shared factor matrix A boils down to a basic Canonical Polyadic Decomposition (CPD) problem that in many cases can directly be solved by means of an eigenvalue decomposition. Next, we explain that by taking the rank-one constraint of the columns of the shared factor matrix A into account when computing the null space of the matrix [X Y], more relaxed identifiability conditions can be obtained that do not require that [A B C] has full column rank. The benefit of the unconstrained null space approach is that it leads to simple algorithms while the benefit of the rank-one constrained null space approach is that it leads to relaxed identifiability conditions. Finally, a joint unbalanced orthogonal Procrustes and CPD fitting approach for computing the shared factor matrix A from noisy observation matrices X and Y will briefly be discussed.more » « less
-
Krylov subspace methods are a ubiquitous tool for computing near-optimal rank kk approximations of large matrices. While "large block" Krylov methods with block size at least kk give the best known theoretical guarantees, block size one (a single vector) or a small constant is often preferred in practice. Despite their popularity, we lack theoretical bounds on the performance of such "small block" Krylov methods for low-rank approximation. We address this gap between theory and practice by proving that small block Krylov methods essentially match all known low-rank approximation guarantees for large block methods. Via a black-box reduction we show, for example, that the standard single vector Krylov method run for t iterations obtains the same spectral norm and Frobenius norm error bounds as a Krylov method with block size ℓ≥kℓ≥k run for O(t/ℓ)O(t/ℓ) iterations, up to a logarithmic dependence on the smallest gap between sequential singular values. That is, for a given number of matrix-vector products, single vector methods are essentially as effective as any choice of large block size. By combining our result with tail-bounds on eigenvalue gaps in random matrices, we prove that the dependence on the smallest singular value gap can be eliminated if the input matrix is perturbed by a small random matrix. Further, we show that single vector methods match the more complex algorithm of [Bakshi et al. `22], which combines the results of multiple block sizes to achieve an improved algorithm for Schatten pp-norm low-rank approximation.more » « less
-
The decomposition of multi-subject fMRI data using rank- (L,L,1,1) block term decomposition (BTD) can preserve higher-way data structure and is more robust to noise effects by decomposing shared spatial maps (SMs) into a product of two rank-L loading matrices. However, since the number of whole-brain voxels is very large and rank L is larger than 1, the rank-(L,L,1,1) BTD requires high computation and memory. Therefore, we propose an accelerated rank- (L,L,1,1) BTD algorithm based upon the method of alternating least squares (ALS). We speed up updates of loading matrices by reducing fMRI data into subspaces, and add an orthonormality constraint on shared SMs to improve the performance. Moreover, we evaluate the rank-L effect on the proposed method for actual task-related fMRI data. The proposed method shows better performance when L=35. Meanwhile, experimental comparison results verify that the proposed method largely reduced (17.36 times) computation time compared to ALS while also providing satisfying separation performance.more » « less
An official website of the United States government
