skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Accelerated Rank-(L,L,1,1) Block Term Decomposition Of Multi-Subject Fmri Data Under Spatial Orthonormality Constraint
The decomposition of multi-subject fMRI data using rank- (L,L,1,1) block term decomposition (BTD) can preserve higher-way data structure and is more robust to noise effects by decomposing shared spatial maps (SMs) into a product of two rank-L loading matrices. However, since the number of whole-brain voxels is very large and rank L is larger than 1, the rank-(L,L,1,1) BTD requires high computation and memory. Therefore, we propose an accelerated rank- (L,L,1,1) BTD algorithm based upon the method of alternating least squares (ALS). We speed up updates of loading matrices by reducing fMRI data into subspaces, and add an orthonormality constraint on shared SMs to improve the performance. Moreover, we evaluate the rank-L effect on the proposed method for actual task-related fMRI data. The proposed method shows better performance when L=35. Meanwhile, experimental comparison results verify that the proposed method largely reduced (17.36 times) computation time compared to ALS while also providing satisfying separation performance.  more » « less
Award ID(s):
2112455
PAR ID:
10331814
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The International Conference on Acoustics, Speech, & Signal Processing (ICASSP)
Page Range / eLocation ID:
3933 to 3937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. iscovering components that are shared in multiple datasets, next to dataset-specific features, has great potential for studying the relationships between different subjects or tasks in functional Magnetic Resonance Imaging (fMRI) data. Coupled matrix and tensor factorization approaches have been useful for flexible data fusion, or decomposition to extract features that can be used in multiple ways. However, existing methods do not directly recover shared and dataset-specific components, which requires post-processing steps involving additional hyperparameter selection. In this paper, we propose a tensor-based framework for multi-task fMRI data fusion, using a partially constrained canonical polyadic (CP) decomposition model. Differently from previous approaches, the proposed method directly recovers shared and dataset-specific components, leading to results that are directly interpretable. A strategy to select a highly reproducible solution to the decomposition is also proposed. We evaluate the proposed methodology on real fMRI data of three tasks, and show that the proposed method finds meaningful components that clearly identify group differences between patients with schizophrenia and healthy controls. 
    more » « less
  2. The CP tensor decomposition is used in applications such as machine learning and signal processing to discover latent low-rank structure in multidimensional data. Computing a CP decomposition via an alternating least squares (ALS) method reduces the problem to several linear least squares problems. The standard way to solve these linear least squares subproblems is to use the normal equations, which inherit special tensor structure that can be exploited for computational efficiency. However, the normal equations are sensitive to numerical ill-conditioning, which can compromise the results of the decomposition. In this paper, we develop versions of the CP-ALS algorithm using the QR decomposition and the singular value decomposition, which are more numerically stable than the normal equations, to solve the linear least squares problems. Our algorithms utilize the tensor structure of the CP-ALS subproblems efficiently, have the same complexity as the standard CP-ALS algorithm when the input is dense and the rank is small, and are shown via examples to produce more stable results when ill-conditioning is present. Our MATLAB implementation achieves the same running time as the standard algorithm for small ranks, and we show that the new methods can obtain lower approximation error. 
    more » « less
  3. We study the joint low-rank factorization of the matrices X=[A B]G and Y=[A C]H, in which the columns of the shared factor matrix A correspond to vectorized rank-one matrices, the unshared factors B and C have full column rank, and the matrices G and H have full row rank. The objective is to find the shared factor A, given only X and Y. We first explain that if the matrix [A B C] has full column rank, then a basis for the column space of the shared factor matrix A can be obtained from the null space of the matrix [X Y]. This in turn implies that the problem of finding the shared factor matrix A boils down to a basic Canonical Polyadic Decomposition (CPD) problem that in many cases can directly be solved by means of an eigenvalue decomposition. Next, we explain that by taking the rank-one constraint of the columns of the shared factor matrix A into account when computing the null space of the matrix [X Y], more relaxed identifiability conditions can be obtained that do not require that [A B C] has full column rank. The benefit of the unconstrained null space approach is that it leads to simple algorithms while the benefit of the rank-one constrained null space approach is that it leads to relaxed identifiability conditions. Finally, a joint unbalanced orthogonal Procrustes and CPD fitting approach for computing the shared factor matrix A from noisy observation matrices X and Y will briefly be discussed. 
    more » « less
  4. Abstract Robust principal component analysis (RPCA) is a widely used method for recovering low‐rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low‐rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non‐Gaussian. We thus propose a new method called RPCA for exponential family distributions (), which can perform the desired decomposition into low‐rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient decomposition, under either its natural or canonical parametrization. The effectiveness of is then demonstrated in two applications: the first for steel sheet defect detection and the second for crime activity monitoring in the Atlanta metropolitan area. 
    more » « less
  5. null (Ed.)
    We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for example, to discover latent patterns in video and imaging applications. As the size of data sets grows, single workstations are hitting bottlenecks in both computation time and available memory. We propose a distributed-memory parallel computing solution to handle massive data sets, loading the input data across the memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-rank approximation. We present a software package called Parallel Low-rank Approximation with Nonnegativity Constraints, which implements our solution and allows for extension in terms of data (dense or sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternating direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary communication and computation, show how to extend the software to include new algorithms and/or constraints, and report efficiency and scalability results for both synthetic and real-world data sets. 
    more » « less