The rise in human population and the advent of biological wastewater treatment has led to increased biosolid production, which requires sustainable solutions to mitigate potential negative impacts associated with the disposal of biosolids. Biosolid land application has the potential to decrease reliance on synthetic fertilizers and improve soil fertility; however, the microbial activity and associated greenhouse gas (GHG) emissions need to be evaluated to ensure there are no negative externalities of this approach. To address these issues, this study aimed to (i) assess the potential of a biosolid-amended soil system to emit nitrous oxide (N2O), (ii) quantify actual field GHG emissions from biosolid-amended soils, and (iii) evaluate a process-based model to predict these soil GHG emissions. This study performed a comprehensive analysis, including laboratory (potential assays and gene abundances), field (static chamber GHG measurements), and modeling (process-based) approaches, to understand the effect of biosolids on soil GHG emissions. We found that biosolid application increased soil nitrate and organic matter, and decreased soil pH in the short-term. Together, the changes in soil conditions promoted more denitrification, which became more complete with laboratory potential dinitrogen higher than nitrous oxide as the end-product over time. In the field, GHG emissions were generally higher in biosolid-amended soils, particularly just after biosolid application. While the predictive model was able to simulate general trends for field GHG emissions, it often underpredicted the magnitude of these emissions. Overall, despite initial increases in GHG, biosolids have the potential as a sustainable amendment to improve soil health and mitigate GHG emissions in agricultural practices over the long term. This research contributes to understanding biosolid use in promoting environmental sustainability and offers insights for future agricultural management strategies.
more »
« less
Potential for improving nutrient use efficiencies of human food systems with a circular economy of organic wastes and fertilizer
Abstract Waste from the human food system includes a large quantity of nutrients that pose environmental and human health risks. If these nutrients can be captured and repurposed, they could potentially offset synthetic fertilizer demands. This study reviews several technologies—including anaerobic digestion, hydrothermal carbonization (HTC), and composting—that can be used to process wastes from the human food system. This study also assesses the quantity of nutrient resources that are available from wastes, including food waste, biosolids, manure, and yard waste. Three geographic scales were analyzed. At a national level in the United States, up to 27% of nitrogen and 33% of phosphorus demands for agriculture could be met with wastes from the human food system, primarily from food waste and biosolids. Some rural localities have a greater potential for circular economies of nutrients in the food system, with the potential to meet 100% of nitrogen and phosphorus fertilizer demands using waste nutrients, as in the case of Athens County, Ohio. Benefits of offsetting synthetic fertilizer use with waste nutrients include reduced greenhouse gas (GHG) emissions, with up to 64% reduction in GHG emissions per unit of nitrogen fertilizer produced with HTC.
more »
« less
- PAR ID:
- 10560004
- Publisher / Repository:
- Purpose-led Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 9
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- 093002
- Subject(s) / Keyword(s):
- food waste biosolid anaerobic digestion hydrothermal carbonization greenhouse gas emissions nitrogen phosphorus
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recycling underutilized resources from food waste (FW) to agriculture through hydrothermal carbonization (HTC) has been proposed to promote a circular economy (CE) in food-energy-water (FEW) nexus. However, most HTC studies on FW were conducted at laboratory scale, and little is known on the efficacy and feasibility of field application of HTC products from FW, i.e. the aqueous phrase (AP) and solid hydrochar (HC), to support agriculture production. An integrated pilot-scale HTC system was established to investigate practical HTC reaction conditions treating FW. A peak temperature of 180 ◦C at a residence time of 60 min with 3 times AP recirculation were recommended as optimal HTC conditions to achieve efficient recovery of nutrients, and desirable AP and HC properties for agriculture application. Dilution of the raw AP and composting of the fresh HC are necessary as post-treatments to eliminate potential phytotoxicity. Applying properly diluted AP and the composted HC significantly improved plant growth and nutrient availability in both greenhouse and field trials, which were comparable to commercial chemical fertilizer and soil amendment. The HTC of FW followed with agricultural application of the products yielded net negative carbon emission of 0.28 t CO2e t 1, which was much lower than the other alternatives of FW treatments. Economic profit could be potentially achieved by valorization of the AP as liquid fertilizer and HC as soil amendment. Our study provides solid evidences demonstrating the technical and economic feasibility of recycling FW to agriculture through HTC as a promising CE strategy to sustain the FEW nexus.more » « less
-
Recycling underutilized resources from food waste (FW) to agriculture through hydrothermal carbonization (HTC) has been proposed to promote a circular economy (CE) in food-energy-water (FEW) nexus. However, most HTC studies on FW were conducted at laboratory scale, and little is known on the efficacy and feasibility of field application of HTC products from FW, i.e. the aqueous phrase (AP) and solid hydrochar (HC), to support agriculture production. An integrated pilot-scale HTC system was established to investigate practical HTC reaction conditions treating FW. A peak temperature of 180 ◦C at a residence time of 60 min with 3 times AP recirculation were recommended as optimal HTC conditions to achieve efficient recovery of nutrients, and desirable AP and HC properties for agriculture application. Dilution of the raw AP and composting of the fresh HC are necessary as post-treatments to eliminate potential phytotoxicity. Applying properly diluted AP and the composted HC significantly improved plant growth and nutrient availability in both greenhouse and field trials, which were comparable to commercial chemical fertilizer and soil amendment. The HTC of FW followed with agricultural application of the products yielded net negative carbon emission of 0.28 t CO2e t 1, which was much lower than the other alternatives of FW treatments. Economic profit could be potentially achieved by valorization of the AP as liquid fertilizer and HC as soil amendment. Our study provides solid evidences demonstrating the technical and economic feasibility of recycling FW to agriculture through HTC as a promising CE strategy to sustain the FEW nexus.more » « less
-
Abstract U.S. rice paddies, critical for food security, are increasingly contributing to non‐CO2greenhouse gas (GHG) emissions like methane (CH4) and nitrous oxide (N2O). Yet, the full assessment of GHG balance, considering trade‐offs between soil organic carbon (SOC) change and non‐CO2GHG emissions, is lacking. Integrating an improved agroecosystem model with a meta‐analysis of multiple field studies, we found that U.S. rice paddies were the rapidly growing net GHG emission sources, increased 138% from 3.7 ± 1.2 Tg CO2eq yr−1in the 1960s to 8.9 ± 2.7 Tg CO2eq yr−1in the 2010s. CH4, as the primary contributor, accounted for 10.1 ± 2.3 Tg CO2eq yr−1in the 2010s, alongside a notable rise in N2O emissions by 0.21 ± 0.03 Tg CO2eq yr−1. SOC change could offset 14.0% (1.45 ± 0.46 Tg CO2eq yr−1) of the climate‐warming effects of soil non‐CO2GHG emissions in the 2010s. This escalation in net GHG emissions is linked to intensified land use, increased atmospheric CO2, higher synthetic nitrogen fertilizer and manure application, and climate change. However, no/reduced tillage and non‐continuous irrigation could reduce net soil GHG emissions by approximately 10% and non‐CO2GHG emissions by about 39%, respectively. Despite the rise in net GHG emissions, the cost of achieving higher rice yields has decreased over time, with an average of 0.84 ± 0.18 kg CO2eq ha−1emitted per kilogram of rice produced in the 2010s. The study suggests the potential for significant GHG emission reductions to achieve climate‐friendly rice production in the U.S. through optimizing the ratio of synthetic N to manure fertilizer, reducing tillage, and implementing intermittent irrigation.more » « less
-
Agricultural management practices improve crop yields to satisfy food demand of the growing population. However, these activities can have negative consequences, including the release of greenhouse gas (GHG) emissions that contribute to global climate change. To mitigate this global environmental problem, the management practices that contribute the most to system GHG emissions should be identified and targeted to mitigate emissions. Accordingly, we estimated the cradle-to-product GHG emissions of irrigated corn production under various farmer-selected scenarios at an experimental testing field in the semi-arid U.S. Great Plains. We applied a carbon footprint approach to quantify life cycle GHG emissions associated with pre-field (e.g., energy production, fertilizer production) and in-field (e.g., groundwater pumping, fertilizer application) activities within fourteen scenarios in the 2020 Oklahoma Testing Ag Performance Solutions (TAPS) sprinkler corn competition. We determined that 63% of the total GHG emission from corn production was associated with in- field activities and that agricultural soil emissions were the overall driving factor. Soil biochemical processes within agricultural soils were expected to contribute an average of 89 ± 18 g CO2-eq kg− 1 corn of the total 271 ± 46 g CO2-eq kg− 1 corn estimated from these systems. On-site natural gas combustion for agricultural groundwater pumping, pre-field fertilizer production, and pre-field energy production for groundwater pumping were the next most influential parameters on total GHG emissions. Diesel fuel, seed, and herbicide production had insignificant contributions to total GHG emissions from corn production. The model was most sensitive to the modeled GHG emissions from agricultural soil, which had significant uncertainty in the emission factor. Therefore, future efforts should target field measurements to better predict the contribution of direct soil emissions to total GHG emissions, particularly under different managements. In addition, identifying the optimal application rate of irrigation water and fertilizer will help to decrease GHG emissions from groundwater irrigated crops.more » « less
An official website of the United States government

