skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 23, 2025

Title: Latency-guaranteed Co-location of Inference and Training for Reducing Data Center Expenses
Today's data centers often need to run various machine learning (ML) applications with stringent SLO (Service-Level Objective) requirements, such as inference latency. To that end, data centers prefer to 1) over-provision the number of servers used for inference processing and 2) isolate them from other servers that run ML training, despite both use GPUs extensively, to minimize possible competition of computing resources. Those practices result in a low GPU utilization and thus a high capital expense. Hence, if training and inference jobs can be safely co-located on the same GPUs with explicit SLO guarantees, data centers could flexibly run fewer training jobs when an inference burst arrives and run more afterwards to increase GPU utilization, reducing their capital expenses. In this paper, we propose GPUColo, a two-tier co-location solution that provides explicit ML inference SLO guarantees for co-located GPUs. In the outer tier, we exploit GPU spatial sharing to dynamically adjust the percentage of active GPU threads allocated to spatially co-located inference and training processes, so that the inference latency can be guaranteed. Because spatial sharing can introduce considerable overheads and thus cannot be conducted at a fine time granularity, we design an inner tier that puts training jobs into periodic sleep, so that the inference jobs can quickly get more GPU resources for more prompt latency control. Our hardware testbed results show that GPUColo can precisely control the inference latency to the desired SLO, while maximizing the throughput of the training jobs co-located on the same GPUs. Our large-scale simulation with a 57-day real-world data center trace (6500 GPUs) also demonstrates that GPUColo enables latency-guaranteed inference and training co-location. Consequently, it allows 74.9% of GPUs to be saved for a much lower capital expense.  more » « less
Award ID(s):
2336886
PAR ID:
10560010
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2575-8411
ISBN:
979-8-3503-8605-9
Format(s):
Medium: X
Location:
Jersey City, NJ, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Edge clouds can provide very responsive services for end-user devices that require more significant compute capabilities than they have. But edge cloud resources such as CPUs and accelerators such as GPUs are limited and must be shared across multiple concurrently running clients. However, multiplexing GPUs across applications is challenging. Further, edge servers are likely to require considerable amounts of streaming data to be processed. Getting that data from the network stream to the GPU can be a bottleneck, limiting the amount of work GPUs do. Finally, the lack of prompt notification of job completion from GPU also results in ineffective GPU utilization. We propose a framework that addresses these challenges in the following manner. We utilize spatial sharing of GPUs to multiplex the GPU more efficiently. While spatial sharing of GPU can increase GPU utilization, the uncontrolled spatial sharing currently available with state-of-the-art systems such as CUDA-MPS can cause interference between applications, resulting in unpredictable latency. Our framework utilizes controlled spatial sharing of GPU, which limits the interference across applications. Our framework uses the GPU DMA engine to offload data transfer to GPU, therefore preventing CPU from being bottleneck while transferring data from the network to GPU. Our framework uses the CUDA event library to have timely, low overhead GPU notifications. Preliminary experiments show that we can achieve low DNN inference latency and improve DNN inference throughput by a factor of ∼1.4. 
    more » « less
  2. null (Ed.)
    Edge cloud data centers (Edge) are deployed to provide responsive services to the end-users. Edge can host more powerful CPUs and DNN accelerators such as GPUs and may be used for offloading tasks from end-user devices that require more significant compute capabilities. But Edge resources may also be limited and must be shared across multiple applications that process requests concurrently from several clients. However, multiplexing GPUs across applications is challenging. With edge cloud servers needing to process a lot of streaming and the advent of multi-GPU systems, getting that data from the network to the GPU can be a bottleneck, limiting the amount of work the GPU cluster can do. The lack of prompt notification of job completion from the GPU can also result in poor GPU utilization. We build on our recent work on controlled spatial sharing of a single GPU to expand to support multi-GPU systems and propose a framework that addresses these challenges. Unlike the state-of-the-art uncontrolled spatial sharing currently available with systems such as CUDA-MPS, our controlled spatial sharing approach uses each of the GPU in the cluster efficiently by removing interference between applications, resulting in much better, predictable, inference latency We also use each of the cluster GPU's DMA engines to offload data transfers to the GPU complex, thereby preventing the CPU from being the bottleneck. Finally, our framework uses the CUDA event library to give timely, low overhead GPU notifications. Our evaluations show we can achieve low DNN inference latency and improve DNN inference throughput by at least a factor of 2. 
    more » « less
  3. Among the variety of applications (apps) being deployed on serverless platforms, apps such as Machine Learning (ML) inference serving can achieve better performance from leveraging accelerators like GPUs. Yet, major serverless providers, despite having GPU-equipped servers, do not offer GPU support for their serverless functions. Given that serverless functions are deployed on various generations of CPUs already, extending this to various (typically more expensive) GPU generations can offer providers a greater range of hardware to serve incoming requests according to the functions and request traffic. Here, providers are faced with the challenge of selecting hardware to reach a well-proportioned trade-off point between cost and performance. While recent works have attempted to address this, they often fail to do so as they overlook optimization opportunities arising from intelligently leveraging existing GPU sharing mechanisms. To address this point, we devise a heterogeneous serverless framework, PALDIA, which uses a prudent Hardware selection policy to acquire capable, costeffective hardware and perform intelligent request scheduling on it to yield high performance and cost savings. Specifically, our scheduling algorithm employs hybrid spatio-temporal GPU sharing that intelligently trades off job queueing delays and interference to allow the chosen cost-effective hardware to also be highly performant. We extensively evaluate PALDIA using 16 ML inference workloads with real-world traces on a 6 node heterogeneous cluster. Our results show that PALDIA significantly outperforms state-of-the-art works in terms of Service Level Objective (SLO) compliance (up to 13.3% more) and tail latency (up to ∼50% less), with cost savings up to 86%. 
    more » « less
  4. Real-time applications such as autonomous and connected cars, surveillance, and online learning applications have to train on streaming data. They require low-latency, high throughput machine learning (ML) functions resident in the network and in the cloud to perform learning and inference. NFV on edge cloud platforms can provide support for these applications by having heterogeneous computing including GPUs and other accelerators to offload ML-related computation. GPUs provide the necessary speedup for performing learning and inference to meet the needs of these latency sensitive real-time applications. Supporting ML inference and learning efficiently for streaming data in NFV platforms has several challenges. In this paper, we present a framework, NetML, that runs existing ML applications on an heterogeneous NFV platform that includes both CPUs and GPUs. NetML efficiently transfers the appropriate packet payload to the GPU, minimizing overheads, avoiding locks, and avoiding CPU-based data copies. Additionally, NetML minimizes latency by maximizing overlap between the data movement and GPU computation. We evaluate the efficiency of our approach for training and inference using popular object detection algorithms on our platform. NetML reduces the latency for inferring images by more than 20% and increases the training throughput by 30% while reducing CPU utilization compared to other state-of-the-art alternatives. 
    more » « less
  5. Ease of use and transparent access to elastic resources have attracted many applications away from traditional platforms toward serverless functions. Many of these applications, such as machine learning, could benefit significantly from GPU acceleration. Unfortunately, GPUs remain inaccessible from serverless functions in modern production settings. We present DGSF, a platform that transparently enables serverless functions to use GPUs through general purpose APIs such as CUDA. DGSF solves provisioning and utilization challenges with disaggregation, serving the needs of a potentially large number of functions through virtual GPUs backed by a small pool of physical GPUs on dedicated servers. Disaggregation allows the provider to decouple GPU provisioning from other resources, and enables significant benefits through consolidation. We describe how DGSF solves GPU disaggregation challenges including supporting API transparency, hiding the latency of communication with remote GPUs, and load-balancing access to heavily shared GPUs. Evaluation of our prototype on six workloads shows that DGSF’s API remoting optimizations can improve the runtime of a function by up to 50% relative to unoptimized DGSF. Such optimizations, which aggressively remove GPU runtime and object management latency from the critical path, can enable functions running over DGSF to have a lower end-to-end time than when running on a GPU natively. By enabling GPU sharing, DGSF can reduce function queueing latency by up to 53%. We use DGSF to augment AWS Lambda with GPU support, showing similar benefits. 
    more » « less