Abstract It is often expected that temperate plants have expanded their geographical ranges northward from primarily southern refugia. Evidence for this hypothesis is mixed in eastern North American species, and there is increasing support for colonization from middle latitudes. We studied genome‐wide patterns of variation in RADseq loci to test hypotheses concerning range expansion in a North American forest herb (Campanula americana). First, spatial patterns of genetic differentiation were determined. Then phylogenetic relationships and divergence times were estimated. Spatial signatures of genetic drift were also studied to identify the directionality of recent range expansion and its geographical origins. Finally, spatially explicit scenarios for the spread of plants across the landscape were compared, using variation in the population mutation parameter and Tajima'sD. We found strong longitudinal subdivision, with populations clustering into groups west and east of the Mississippi River. While the southeastern region was probably part of a diverse Pleistocene refugium, there is little evidence that range expansion involved founders from these southern locales. Instead, declines in genetic diversity and the loss of rare alleles support a westward colonization wave from a middle latitude refugium near the southern Appalachian Mountains, with subsequent expansion from a Pleistocene staging ground in the Mississippi River Valley (0.51–1.27 million years ago). These analyses implicate stepping stone colonization from middle latitudes as an important mechanism of species range expansion in eastern North America. This study further demonstrates the utility of population genetics as a tool to infer the routes travelled by organisms during geographical range expansion.
more »
« less
Pleistocene Glaciation Drove Shared Population Coexpansion in Eastern North American Snakes
ABSTRACT Glacial cycles during the Pleistocene had profound impacts on local environments and climatic conditions. In North America, some regions that currently support diverse biomes were entirely covered by ice sheets, while other regions were environmentally unsuitable for the organisms that live there now. Organisms that occupy these regions in the present day must have expanded or dispersed into these regions since the last glacial maximum, leading to the possibility that species with similar geographic distributions may show temporally concordant population size changes associated with these warming trends. We examined 17 lineages from 9 eastern North American snake species and species complexes to test for a signal of temporally concordant coexpansion using a machine learning approach. We found that the majority of lineages show population size increases towards the present, with evidence for coexpansion in five out of fourteen lineages, while expansion in others was idiosyncratic. We also examined relationships between genetic distance and current environmental predictors and showed that genomic responses to environmental predictors are not consistent among species. We, therefore, conclude that Pleistocene warming resulted in population size increases in most eastern North American snake species, but variation in environmental preferences and other species‐specific traits results in variance in the exact timing of expansion.
more »
« less
- PAR ID:
- 10560084
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 34
- Issue:
- 11
- ISSN:
- 0962-1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine‐learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages.more » « less
-
Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns.more » « less
-
ABSTRACT Many coastal marine species experienced Pleistocene gene flow between the North Pacific and Atlantic. Understanding historical connectivity between ocean basins should aid in predicting how regional faunas will respond to recent warming that has intensified trans‐Arctic dispersal. Wetland fauna of the Northwestern Atlantic may have survived in estuarine refugia throughout glacial cycles, or recolonised from the southern coast, North Pacific or Northeastern Atlantic. Here, we used multilocus genetic markers and historical climate data to investigate lineage distribution and connectivity among populations of the nominally cosmopolitan sea slugAlderia modesta, sampled from mudflats on both coasts of the North Pacific and North Atlantic. Mitochondrial DNA clades from European and North American populations were deeply divergent and reciprocally monophyletic; differences at seven polymorphic nuclear loci indicated prolonged absence of trans‐Atlantic gene flow. A Pacific ancestor likely first colonised the Atlantic during the marine biotic interchange of the middle Pliocene ~3.5 Ma. Both mtDNA phylogenetics and nuclear genotype assignments support repeated trans‐Arctic colonisation of the Northwestern Atlantic from the Pacific during inter‐glacial cycles; no gene flow was evident since the last glacial maximum, however. Time‐calibrated coalescent phylogenies, Bayesian skyline plots and haplotype networks all indicated recent population expansions in the Pacific and Europe, but not Northwestern Atlantic. In both the Pacific and Northwestern Atlantic, older lineages persisted in patchy refugia north of glacial margins, while a derived clade of Pacific haplotypes indicates northward post‐LGM expansion. The biogeographical history ofAlderiacontrasts with rocky‐shore taxa that were largely extirpated by glacial advance and recolonised from refugia following the last glacial maximum. Based on molecular differences and distinctions in radular and penial stylet morphology, we resurrect the nameAlderia harvardiensisGould 1870 forAlderiafrom the Northwestern Atlantic and North Pacific;A. modestarefers exclusively to European slugs.more » « less
-
Abstract Quaternary climate change has been strongly linked to distributional shifts and recent species diversification. Montane species, in particular, have experienced enhanced isolation and rapid genetic divergence during glacial fluctuations, and these processes have resulted in a disproportionate number of neo‐endemic species forming in high‐elevation habitats. In temperate montane environments, a general model of alpine population history is well supported, where cold‐specialized species track favourable climate conditions downslope during glacial episodes and upslope during warmer interglacial periods, which leads to a climate‐driven population or species diversification pump. However, it remains unclear how geography mediates distributional changes and whether certain episodes of glacial history have differentially impacted rates of diversification. We address these questions by examining phylogenomic data in a North American clade of flightless, cold‐specialized insects, the ice crawlers (Insecta: Grylloblattodea: Grylloblattidae:Grylloblatta). These low‐vagility organisms have the potential to reveal highly localized refugia and patterns of spatial recolonization, as well as a longer history of in situ diversification. Using continuous phylogeographic analysis of species groups, we show that all species tend to retreat to nearby low‐elevation habitats across western North America during episodes of glaciation, but species at high latitude exhibit larger distributional shifts. Lineage diversification was examined over the course of the Neogene and Quaternary periods, with statistical analysis supporting a direct association between climate variation and diversification rate. Major increases in lineage diversification appear to be correlated with warm and dry periods, rather than with extreme glacial events. Finally, we identify substantial cryptic diversity among ice crawlers, leading to high endemism across their range. This diversity provides new insights into highly localized glacial refugia for cold‐specialized species across western North America.more » « less
An official website of the United States government
