skip to main content

This content will become publicly available on August 24, 2022

Title: Modelling the effects of atmospheric alkylamines on the properties of sea salt aerosols using the extended aerosols and inorganics model (E-AIM)
Sea salt aerosols contribute significantly to the mass loading of ambient aerosol, which may serve as cloud condensation nuclei and can contribute to light scattering in the atmosphere. Two major chemical components commonly found in sea salts are ammonium sulfate (AS) and sodium chloride (NaCl). It has been shown that alkylamines, derivatives of ammonia, can react with ammonium salts in the particle-phase to displace ammonia and likely change the particle properties. This study investigated the effects of atmospheric alkylamines on the composition and properties of sea salt aerosols using a chemical system of methylamine (MA, as a proxy of alkylamines), AS and NaCl (as a proxy of sea salt aerosol). The concentrations of ammonia and MA in aqueous/gas phases at the thermodynamic equilibrium were determined using the Extended Aerosols and Inorganics Model (E-AIM) under varying initial inputs, along with the deliquescence relative humidity (DRH) and the corresponding particle water content. Our findings indicated a notable negative relationship between MA concentration and the DRH for both AS and NaCl while the effect of MA on NaCl is smaller than that on AS. The salt of MA in the particle phase may absorb water vapor and may lead to the displacement reaction more » between AS and NaCl due to the low solubility of sodium sulfate. The acidity in the particle phase also played a significant role in affecting the DRH of sea salt aerosols. Since both sea salt aerosol and alkylamines are emitted into the atmosphere from the ocean in large quantities, our study suggested the potential impact of alkylamines on the environment and the climate via the modification of sea salt aerosol properties. « less
Authors:
; ;
Award ID(s):
1847019
Publication Date:
NSF-PAR ID:
10330184
Journal Name:
The 262nd American Chemical Society National Meeting & Exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research in atmospheric chemistry suggested that gaseous amines may rapidly react with the acidic components in the aerosol to be incorporated in the particle phase. However, laboratory experiments suggested that these heterogeneous processes may be sensitive to the reaction conditions, such as relative humidity (RH), the initial aerosol acidity and the initial concentration of gaseous ammonia which is ubiquitous in the atmosphere. We studied the heterogenous reactions between several amines and ammonium sulfate using a series of thermodynamic simulations under varying initial conditions, including RH, particle-phase acidity and gaseous amine and ammonia concentrations. Several distinctively different trends in themore »particle-phase ammonium, amines and water content were observed, depending significantly on the particle-phase acidity and the initial amine to ammonia mole ratio. One notable observation was that alkylamines may facilitate the water uptake of ammonium sulfate even in the presence of 1000 times more ammonia gas. Such change in aerosol water content may alter the surface tension, uptake coefficient and could formation properties of aerosol and influence the radiative forcing of the particles.« less
  2. Abstract Number: 530 Working Group: Aerosol Chemistry Abstract Isoprene is the most abundant non-methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics andmore »products of ISOPOOH reacting with particle phase inorganic sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas-phase 1,2-ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas-phase ISOPOOH and particle-phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle-into-liquid sampler (PILS), and also collected by Teflon filters for offline molecular-level analyses by an ultra-performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time-of-flight mass spectrometry (UPLC-ESI-HR-QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles. Access: https://aaarabstracts.com/2020/viewabstract.php?pid=530« less
  3. The partitioning of medium-chain fatty acid surfactants such as nonanoic acid (NA) between the bulk phase and the air/water interface is of interest to a number of fields including marine and atmospheric chemistry. However, questions remain about the behavior of these molecules, the contributions of various relevant chemical equilibria, and the impact of pH, salt and bulk surfactant concentrations. In this study, the surface adsorption of nonanoic acid and its conjugate base is quantitatively investigated at various pH values, surfactant concentrations and the presence of salts. Surface concentrations of protonated and deprotonated species are dictated by surface-bulk equilibria which canmore »be calculated from thermodynamic considerations. Notably we conclude that the surface dissociation constant of soluble surfactants cannot be directly obtained from these experimental measurements, however, we show that molecular dynamics (MD) simulation methods, such as free energy perturbation (FEP), can be used to calculate the surface acid dissociation constant relative to that in the bulk. These simulations show that nonanoic acid is less acidic at the surface compared to in the bulk solution with a p K a shift of 1.1 ± 0.6, yielding a predicted surface p K a of 5.9 ± 0.6. A thermodynamic cycle for nonanoic acid and its conjugate base between the air/water interface and the bulk phase can therefore be established. Furthermore, the effect of salts, namely NaCl, on the surface activity of protonated and deprotonated forms of nonanoic acid is also examined. Interestingly, salts cause both a decrease in the bulk p K a of nonanoic acid and a stabilization of both the protonated and deprotonated forms at the surface. Overall, these results suggest that the deprotonated medium-chain fatty acids under ocean conditions can also be present within the sea surface microlayer (SSML) present at the ocean/atmosphere interface due to the stabilization effect of the salts in the ocean. This allows the transfer of these species into sea spray aerosols (SSAs). More generally, we present a framework with which the behavior of partially soluble species at the air/water interface can be predicted from surface adsorption models and the surface p K a can be predicted from MD simulations.« less
  4. Isoprene is the most abundant non‐methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganicmore »sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle‐into‐liquid sampler (PILS), and also collected by Teflon filters for offline molecularlevel analyses by an ultra‐performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐HR‐QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles.« less
  5. Isoprene is the most abundant non‐methane volatile organic compound (VOC) emitted globally. Isomeric isoprene hydroxy hydroperoxides (ISOPOOH), key photooxidation products of isoprene, likely comprise the second most abundant class of peroxides in the atmosphere, following hydrogen peroxide. Studies have shown that hydrogen peroxide plays important roles in the formation of inorganic sulfates in cloud water mimics. However, the potential for ISOPOOH to play a role in sulfate formation in wet aerosol oxidation from reduced sulfur species (such as inorganic sulfite) is not well understood. This study systematically investigates the reaction kinetics and products of ISOPOOH reacting with particle phase inorganicmore »sulfite and discusses implications to the sulfate aerosol budget. In order to examine the reaction kinetics of ISOPOOH with aqueous sulfite, ammonium bisulfite particles were injected into the UNC indoor environmental chamber under dark conditions with 70% RH. After the inorganic sulfite concentrations stabilized, selected concentrations of gas‐phase 1,2‐ISOPOOH was injected into the chamber to initiate the multiphase reaction. The gas‐phase ISOPOOH and particle‐phase species were sampled with online instruments, including a chemical ionization mass spectrometer (CIMS), an aerosol chemical speciation monitor (ACSM), and a particle‐into‐liquid sampler (PILS), and also collected by Teflon filters for offline molecular level analyses by an ultra‐performance liquid chromatography coupled to an electrospray ionization high resolution quadrupole time‐of‐flight mass spectrometry (UPLC‐ESI‐HR‐QTOFMS). Results show that a significant amount of inorganic sulfite was converted to inorganic sulfate and organosulfates in the particle phase at relatively fast reaction rates, altering the chemical and physical properties of the particles including phase state, pH, reactivity, and composition. Given the high abundance and water solubility of ISOPOOH in the ambient environment, the multiphase reactions examined in our study indicate significant impacts of ISOPOOH on the atmospheric lifecycle of sulfur and the physicochemical properties of ambient particles.« less