skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Monitoring aerial insect biodiversity: a radar perspective
In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs ‘species population’, ‘species traits’, ‘community composition’ and ‘ecosystem function’. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’.  more » « less
Award ID(s):
2017582 1840230
PAR ID:
10560268
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Royal Society Publishing
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
379
Issue:
1904
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Weather radar networks have great potential for continuous and long-term monitoring of aerial biodiversity of birds, bats, and insects. Biological data from weather radars can support ecological research, inform conservation policy development and implementation, and increase the public’s interest in natural phenomena such as migration. Weather radars are already used to study animal migration, quantify changes in populations, and reduce aerial conflicts between birds and aircraft. Yet efforts to establish a framework for the broad utilization of operational weather radar for biodiversity monitoring are at risk without suitable data policies and infrastructure in place. In Europe, communities of meteorologists and ecologists have made joint efforts toward sharing and standardizing continent-wide weather radar data. These efforts are now at risk as new meteorological data exchange policies render data useless for biodiversity monitoring. In several other parts of the world, weather radar data are not even available for ecological research. We urge policy makers, funding agencies, and meteorological organizations across the world to recognize the full potential of weather radar data. We propose several actions that would ensure the continued capability of weather radar networks worldwide to act as powerful tools for biodiversity monitoring and research. 
    more » « less
  2. Weather radars provide detailed information on aerial movements of organisms. However, interpreting fine-scale radar imagery remains challenging because of changes in aerial sampling altitude with distance from the radar. Fine-scale radar imagery has primarily been used to assess mass exodus at sunset to study stopover habitat associations. Here, we present a method that enables a more intuitive integration of information across elevation scans projected in a two-dimensional spatial image of fine-scale radar reflectivity. We applied this method on nights of intense bird migration to demonstrate how the spatial distribution of migrants can be explored at finer spatial scales and across multiple radars during the higher flying en-route phase of migration. The resulting reflectivity maps enable explorative analysis of factors influencing their regional and fine-scale distribution. We illustrate the method’s application by generating time-series of composites of up to 20 radars, achieving a nearly complete spatial coverage of a large part of Northwest Europe. These visualizations are highly useful in interpreting regional-scale migration patterns and provide detailed information on bird movements in the landscape and aerial environment. 
    more » « less
  3. Desneux, N (Ed.)
    There has been continuous and growing interest in edible insects. Worldwide, various levels of insect farming are emerging, ranging from small domestic farms to vertical farms reaching heights of 36 meters, accommodating several million growing insects. The appeal of insects lies in their ecological benefits, as they contribute to the valorization of underutilized organic residues while requiring minimal space and water. The selection of insect species is influenced not only by their biology and behavior but also by local preferences and customs, varying with the scale of production and geographical location. This review article aims to provide an updated overview of the main insect species produced across different continents, their current level of industrialization, and production prospects based on available literature. 
    more » « less
  4. Abstract The fate of migrating insects that encounter rainfall in flight is a critical consideration when modelling insect movement, but few field observations of this common phenomenon have ever been collected due to the logistical challenges of witnessing these encounters. Operational cloud radars have been deployed around the world by meteorological agencies to study precipitation physics, and as a byproduct, provide a rich database of insect observations that is freely available to researchers. Although considered unwanted ‘clutter’ by the meteorologists who collect the data, the analysis method presented here enables ecologists to delineate co‐occurring signals from insects and raindrops.We present a method that uses image processing techniques on cloud radar velocity spectra to examine the fate of migrating insects when they encounter precipitation. By analysing velocity spectra, we can distinguish flying insects from falling rain and compare the relative density of insects in flight before, during and after the rainfall. We demonstrate the method on a case of insect migration in Oklahoma, USA.Using this method, we show the first reconstructed images of migrating insect layers in flight during rainfall. Our analysis shows that mild to moderate rainfall diminishes the number of insects aloft but does not cause full termination of migratory flight, as has previously been suggested.We hope this technique will spur further investigations of how changing weather conditions impact insect migration, and enable some of the first of such studies in regions of the world that are underrepresented in the literature. 
    more » « less
  5. Insects play vital ecological roles; many provide essential ecosystem services while others are economically devastating pests and disease vectors. Concerns over insect population declines and expansion have generated a pressing need to effectively monitor insects across broad spatial and temporal scales. A promising approach is bioacoustics, which uses sound to study ecological communities. Despite recent increases in machine learning technologies, the status of emerging automated bioacoustics methods for monitoring insects is not well known, limiting potential applications. To address this gap, we systematically review the effectiveness of automated bioacoustics models over the past four decades, analysing 176 studies that met our inclusion criteria. We describe their strengths and limitations compared to traditional methods and propose productive avenues forward. We found automated bioacoustics models for 302 insect species distributed across nine Orders. Studies used intentional calls (e.g. grasshopper stridulation), by‐products of flight (e.g. bee wingbeats) and indirectly produced sounds (e.g. grain movement) for identification. Pests were the most common study focus, driven largely by weevils and borers moving in dried food and wood. All disease vector studies focused on mosquitoes. A quarter of the studies compared multiple insect families. Our review illustrates that machine learning, and deep learning in particular, are becoming the gold standard for bioacoustics automated modelling approaches. We identified models that could classify hundreds of insect species with over 90% accuracy. Bioacoustics models can be useful for reducing lethal sampling, monitoring phenological patterns within and across days and working in locations or conditions where traditional methods are less effective (e.g. shady, shrubby or remote areas). However, it is important to note that not all insect taxa emit easily detectable sounds, and that sound pollution may impede effective recordings in some environmental contexts. Synthesis and applications: Automated bioacoustics methods can be a useful tool for monitoring insects and addressing pressing ecological and societal questions. Successful applications include assessing insect biodiversity, distribution and behaviour, as well as evaluating the effectiveness of restoration and pest control efforts. We recommend collaborations among ecologists and machine learning experts to increase model use by researchers and practitioners. 
    more » « less