skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2017582

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The exodus of flying animals from their roosting locations is often visible as expanding ring‐shaped patterns in weather radar data. The NEXRAD network, for example, archives more than 25 years of data across 143 contiguous US radar stations, providing opportunities to study roosting locations and times and the ecosystems of birds and bats. However, access to this information is limited by the cost of manually annotating millions of radar scans. We develop and deploy an AI‐assisted system to annotate roosts in radar data. We build datasets with roost annotations to support the training and evaluation of automated detection models. Roosts are detected, tracked, and incorporated into our developed web‐based interface for human screening to produce research‐grade annotations. We deploy the system to collect swallow and martin roost information from 12 radar stations around the Great Lakes spanning 21 years. After verifying the practical value of the system, we propose to improve the detector by incorporating both spatial and temporal channels from volumetric radar scans. The deployment on Great Lakes radar scans allows accelerated annotation of 15 628 roost signatures in 612 786 radar scans with 183.6 human screening hours, or 1.08 s per radar scan. We estimate that the deployed system reduces human annotation time by ~7×. The temporal detector model improves the average precision at intersection‐over‐union threshold 0.5 (APIoU = .50) by 8% over the previous model (48%→56%), further reducing human screening time by 2.3× in its pilot deployment. These data contain critical information about phenology and population trends of swallows and martins, aerial insectivore species experiencing acute declines, and have enabled novel research. We present error analyses, lay the groundwork for continent‐scale historical investigation about these species, and provide a starting point for automating the detection of other family‐specific phenomena in radar data, such as bat roosts and mayfly hatches. 
    more » « less
  2. Abstract In this study, we combined a machine learning pipeline and human supervision to identify and label swallow and martin roost locations on data captured from 2000 to 2020 by 12 Weather Surveillance Radars in the Great Lakes region of the US. We employed radar theory to extract the number of birds in each roost detected by our technique. With these data, we set out to investigate whether roosts formed consistently in the same geographic area over two decades and whether consistency was also predictive of roost size. We used a clustering algorithm to group individual roost locations into 104 high‐density regions and extracted the number of years when each of these regions was used by birds to roost. In addition, we calculated the overall population size and analyzed the daily roost size distributions. Our results support the hypothesis that more persistent roosts are also gathering more birds, but we found that on average, most individuals congregate in roosts of smaller size. Given the concentrations and consistency of roosting of swallows and martins in specific areas throughout the Great Lakes, future changes in these patterns should be monitored because they may have important ecosystem and conservation implications. 
    more » « less
  3. In the current biodiversity crisis, populations of many species have alarmingly declined, and insects are no exception to this general trend. Biodiversity monitoring has become an essential asset to detect biodiversity change but remains patchy and challenging for organisms that are small, inconspicuous or make (nocturnal) long-distance movements. Radars are powerful remote-sensing tools that can provide detailed information on intensity, timing, altitude and spatial scale of aerial movements and might therefore be particularly suited for monitoring aerial insects and their movements. Importantly, they can contribute to several essential biodiversity variables (EBVs) within a harmonized observation system. We review existing research using small-scale biological and weather surveillance radars for insect monitoring and outline how the derived measures and quantities can contribute to the EBVs ‘species population’, ‘species traits’, ‘community composition’ and ‘ecosystem function’. Furthermore, we synthesize how ongoing and future methodological, analytical and technological advancements will greatly expand the use of radar for insect biodiversity monitoring and beyond. Owing to their long-term and regional-to-large-scale deployment, radar-based approaches can be a powerful asset in the biodiversity monitoring toolbox whose potential has yet to be fully tapped. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’. 
    more » « less
  4. The amount of energy available in a system constrains large-scale patterns of abundance. Here, we test the role of temperature and net primary productivity as drivers of flying insect abundance using a novel continental-scale data source: weather surveillance radar. We use the United States NEXRAD weather radar network to generate a near-daily dataset of insect flight activity across a gradient of temperature and productivity. Insect flight activity was positively correlated with mean annual temperature, explaining 38% of variation across sites. By contrast, net primary productivity did not explain additional variation. Grassland, forest and arid-xeric shrubland biomes differed in their insect flight activity, with the greatest abundance in subtropical and temperate grasslands. The relationship between insect flight abundance and temperature varied across biome types. In arid-xeric shrublands and in forest biomes the temperature–abundance relationship was indirectly (through net primary productivity) or directly (in the form of precipitation) mediated by water availability. These results suggest that temperature constraints on metabolism, development, or flight activity shape macroecological patterns in ectotherm abundance. Assessing the drivers of continental-scale patterns in insect abundance and their variation across biomes is particularly important to predict insect community response to warming conditions. This article is part of the theme issue ‘Towards a toolkit for global insect biodiversity monitoring’. 
    more » « less