Abstract Cathodoluminescence (CL) images of kyanite reveal several internal textures, including sector zoning, oscillatory zoning, and cross‐cutting relationships among different domains. Many textures observed in kyanite correspond to discrete events, thereby connecting kyanite textures to the pressure–temperature (P–T) history of the rock. To evaluate the record of metamorphism preserved by kyanite, metapelites were selected from three different orogens that reflectP–Tconditions ranging from amphibolite to ultrahigh‐pressure (UHP) facies. Cross‐correlation of variations in CL intensity, chemistry, and crystal orientation within kyanite indicate the following findings. First, the preservation of original growth zones in kyanite from poly‐metamorphic rocks demonstrates that growth zoning in kyanite persists through metamorphic events and is not erased by diffusion or complete recrystallization. In some samples, kyanite retains evidence of its reaction history during growth. Second, measured changes in absolute crystallographic orientation do not correspond with changes in CL intensity in any of the measured samples, including kyanite twins. Third, both kink banding and undulatory extinction are present across all samples, consistent with rotation about <010> in the (100)[001] slip system. Kyanite from (U)HP samples exhibits higher amplitude undulations than kyanite from lower‐grade lithologies, suggesting that crystallographic orientation data may provide complementary insight about deformation along theP–Tpath. Fourth, specific CL and trace element signatures in kyanite can be correlated with discrete metamorphic histories; yet, CL intensity and colour are affected by multiple elements, not a single controlling element. In sum, multiple generations of kyanite can be identified by careful cross‐correlation of CL and geochemical data, and when combined with crystal orientation data, kyanite provides a robust record of a rock'sP–Tevolution.
more »
« less
This content will become publicly available on December 1, 2025
Intervalence charge transfer in aluminum oxide and aluminosilicate minerals at elevated temperatures
Abstract Single-crystal optical spectra of corundum (Al2O3) and the Al2SiO5 polymorphs andalusite, kyanite, and sillimanite, containing both Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfer (IVCT) absorption bands were measured at temperatures up to 1000 °C. Upon heating, thermally equilibrated IVCT bands significantly decreased in intensity and recovered fully on cooling. These trends contrast with the behavior of crystal field bands at temperature for Fe, Cr, and V in corundum, kyanite, and spinel. The effects of cation diffusion and aggregation, as well as the redistribution of band intensity at temperature, are also discussed. The loss of absorption intensity in the visible and near-infrared regions of the spectrum of these phases may point to a more general behavior of IVCT in minerals at temperatures within the Earth with implications for radiative conductivity within the Earth.
more »
« less
- Award ID(s):
- 2148727
- PAR ID:
- 10560282
- Publisher / Repository:
- American Mineralogist
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 109
- Issue:
- 12
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 2152 to 2161
- Subject(s) / Keyword(s):
- Intervalence charge transfer temperature dependence corundum andalusite kyanite sillimanite
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We quantify the metamorphic pressure-temperature (P-T) conditions for a newly discovered silica-undersaturated high-pressure granulite (HPG) from the Central Maine Terrane (CMT) in northeastern Connecticut, U.S.A. The rocks lie within the Acadian-Neoacadian orogenic belt (Devonian) and form part of the Brimfield Schist. The Brimfield and the adjacent Bigelow Brook Formation contain silica-saturated rocks that have previously been shown to have undergone ~1000 °C metamorphism. The pressure was less well constrained at ≥ ~1 GPa. Silica-undersaturated rocks hold underutilized potential for pinpointing peak metamorphic conditions, particularly pressure, because of their resilience to melting and the variety of refractory minerals they contain. The typical silica-undersaturated mineral assemblage is garnet + spinel + corundum + plagioclase + K-feldspar + biotite + ilmenite. Leucosomes are syenites consisting of two feldspars ± biotite. Plagioclase is commonly antiperthitic, particularly in feldspathic domains surrounding peritectic garnet; such garnet crystals reach ~10 cm in diameter. Alkali feldspars are perthitic. The rocks contain remarkable ellipsoidal spinels as much as 5.5 cm long comprising discrete crystallographic domains hosting crystallographically oriented lamellae of a Fe-Ti phase, most likely ilmenite. Corundum is usually colorless, but can also be found as sapphire in shades of pink, purple, and blue, particularly in antiperthite-rich domains surrounding large garnets. Some sapphires are concentrically color zoned. We carried out a P-T estimation using ternary feldspar reintegration thermometry of metamorphic antiperthites together with pseudosection modeling. Samples texturally and chemically record near-eclogite facies equilibration at minimum conditions of ~1040 °C and ~1.8 GPa, establishing the CMT in northeastern CT as the first known HPG locality in the U.S. These results are consistent with high P2O5 levels found in garnet (0.18 wt%), Ti-in-biotite thermometry, regional sillimanite pseudomorphs after kyanite, and preliminary experimental work on melt inclusions in garnet (Ferrero et al. 2017). The leucosomes provide strong evidence that partial melting of silica-undersaturated rocks at HPG conditions can produce syenitic magmata. Strongly melt-depleted silica-undersaturated rocks may also be protoliths for garnet + spinel + corundum xenoliths reported from kimberlites. The presence of HPG gneisses demonstrates that the large-scale thrusts of the CMT sample the deepest roots of the orogenic belt (60–70 km), and perhaps even deeper subduction zone lithologies as well.more » « less
-
A synthetic laser ruby crystal (HD-LR1) is introduced as a new matrix-matched reference material for secondary ionization mass spectrometry (SIMS) analysis of oxygen isotopes in corundum. Laser fluorination isotope ratio mass spectrometry (LF-IRMS) bulk analyses of multiple mg-sized fragments are homogenous, averaging δ18O = +18.40 ± 0.14‰ (95% confidence interval, n = 23) and Δ′17O = −0.368 ± 0.005‰ (as deviation from slope 0.528 for δ′17O vs. δ′18O at 95% conf., n = 11) relative to Vienna Standard Mean Ocean Water (V-SMOW). SIMS spot analyses show homogeneous O-isotopic values at the ng-scale independent of the location in the HD-LR1 single crystal and in four different crystallographic orientations. However, sample surface topography as an artefact of polishing corundum embedded in epoxy creates excess variability in δ18O within ∼100 μm from the edges of the grains. HD-LR1 is a chemical pure crystal with only Cr as a trace component detected at 276 μg g−1 by EPMA, whereas Be, often introduced in artificial gem enhancement, is <0.002 μg g−1 based on SIMS analyses. Therefore, HD-LR1 can also be used as a reference material for Cr, or as a blank for other trace element analyses of corundum by SIMS or LA-ICP-MS.more » « less
-
Abstract Using our recently developed X‐ray diffraction basedforce constantsapproach, we have determined the equilibrium Si isotope fractionation between omphacite/garnet, quartz/kyanite, and quartz/zircon at temperatures relevant to the petrogenesis. We find that Na strongly affects the Si isotope fractionation between omphacite and garnet. Our results have suggested that the omphacite and garnet in eclogite collected in the Dabie Mountain, as well as the kyanite and its host quartz veins, are isotopically in equilibrium, which further suggests that the Dabie Mountain eclogites and its host veins underwent the same high pressure‐temperature condition during their formation. The Si isotope fractionation determined by our methods, together with published mass spectroscopy measurements, DFT‐CIPW calculations and sigmoid fitting on various felsic granites, have suggested that the Si isotope fraction between zircon and whole rock “saturates” at ∼0.45‰ at 1000 K when the SiO2content in the granite is above ∼70 wt%.more » « less
-
PbSe is a narrow bandgap IV–VI compound semiconductor with application in mid-wave infrared optoelectronics, thermoelectrics, and quantum devices. Alkaline-earth or rare-earth elements such as Sr and Eu can substitute Pb to widen the bandgap of PbSe in heterostructure devices, but they come with challenges such as deteriorating optical and electronic properties, even in dilute concentrations due to their dissimilar atomic nature. We substitute Pb instead with column IV Ge and assess the potential of rocksalt phase PbGeSe as a wider bandgap semiconductor in thin films grown by molecular beam epitaxy on GaAs substrates. Low sticking of GeSe adatoms requires synthesis temperatures below 260 °C to incorporate Ge, but this yields poor structural and compositional uniformity as determined by x-ray diffraction. Consequently, as-grown films in the range Pb0.94Ge0.06Se–Pb0.83Ge0.17Se (6%–17% Ge) show much less bandgap widening in photoluminescence than prior work on bulk crystals using absorption. We observe that post-growth rapid thermal annealing at temperatures of 375–450 °C improves the crystal quality and recovers bandgap widening. Rapid interdiffusion of Ge during annealing, however, remains a challenge in harnessing such PbGeSe materials for compositionally sharp heterostructures. Annealed 17% Ge films emit light at 3–3.1 μm with a minimal shift in wavelength vs temperature. These samples are wider in bandgap than PbSe films by 55 meV at room temperature, and the widening increases to 160 meV at 80 K, thanks to sharply different dependence of bandgap on temperature in PbSe vs PbGeSe.more » « less
An official website of the United States government
