Recent studies of zirconium isotopes in igneous systems have revealed significant mass dependent variability, the origin of which remains intensely debated. While magmatic zircon crystallisation could potentially drive equilibrium isotope fractionation, given that Zr4+ undergoes a shift in coordination as zircon precipitates from a silicic melt, ab initio calculations predict only limited equilibrium fractionation between zircon and melt at magmatic temperatures. To resolve this debate, we determined the isotopic fractionation between co-existing zircon and silicic melt using controlled zircon growth experiments. Our experimental results indicate that zircon has a lower δ94/90Zr relative to co-existing melt by ∼0.045 ‰ at magmatic conditions, which is in excellent agreement with ab initio predictions. Our results imply that, for most natural systems studied to date, the observed variability is predominantly a result of non-equilibrium rather than equilibrium isotope fractionation during zircon crystallisation.
more »
« less
This content will become publicly available on April 10, 2026
Equilibrium Silicon Isotope Fractionation in Eclogites and Granites Constrained by Single Crystal X‐Ray Diffraction and the Force Constants Approach
Abstract Using our recently developed X‐ray diffraction basedforce constantsapproach, we have determined the equilibrium Si isotope fractionation between omphacite/garnet, quartz/kyanite, and quartz/zircon at temperatures relevant to the petrogenesis. We find that Na strongly affects the Si isotope fractionation between omphacite and garnet. Our results have suggested that the omphacite and garnet in eclogite collected in the Dabie Mountain, as well as the kyanite and its host quartz veins, are isotopically in equilibrium, which further suggests that the Dabie Mountain eclogites and its host veins underwent the same high pressure‐temperature condition during their formation. The Si isotope fractionation determined by our methods, together with published mass spectroscopy measurements, DFT‐CIPW calculations and sigmoid fitting on various felsic granites, have suggested that the Si isotope fraction between zircon and whole rock “saturates” at ∼0.45‰ at 1000 K when the SiO2content in the granite is above ∼70 wt%.
more »
« less
- PAR ID:
- 10585113
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 52
- Issue:
- 8
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In orogens worldwide and throughout geologic time, large volumes of deep continental crust have been exhumed in domal structures. Extension‐driven ascent of bodies of deep, hot crust is a very efficient mechanism for rapid heat and mass transfer from deep to shallow crustal levels and is therefore an important mechanism in the evolution of continents. The dominant rock type in exhumed domes is quartzofeldspathic gneiss (typically migmatitic) that does not record its former high‐pressure (HP) conditions in its equilibrium mineral assemblage; rather, it records the conditions of emplacement and cooling in the mid/shallow crust. Mafic rocks included in gneiss may, however, contain a fragmentary record of a HP history, and are evidence that their host rocks were also deeply sourced. An excellent example of exhumed deep crust that retains a partial HP record is in the Montagne Noire dome, French Massif Central, which contains well‐preserved eclogite (garnet+omphacite+rutile+quartz) in migmatite in two locations: one in the dome core and the other at the dome margin. Both eclogites recordP ~ 1.5 ± 0.2 GPa atT ~ 700 ± 20°C, but differ from each other in whole‐rock and mineral composition, deformation features (shape and crystallographic preferred orientation, CPO), extent of record of prograde metamorphism in garnet and zircon, and degree of preservation of inherited zircon. Rim ages of zircon in both eclogites overlap with the oldest crystallization ages of host gneiss atc.310 Ma, interpreted based on zircon rare earth element abundance in eclogite zircon as the age of HP metamorphism. Dome‐margin eclogite zircon retains a widespread record of protolith age (c.470–450 Ma, the same as host gneiss protolith age), whereas dome‐core eclogite zircon has more scarce preservation of inherited zircon. Possible explanations for differences in the two eclogites relate to differences in the protolith mafic magma composition and history and/or the duration of metamorphic heating and extent of interaction with aqueous fluid, affecting zircon crystallization. Differences in HP deformation fabrics may relate to the position of the eclogite facies rocks relative to zones of transpression and transtension at an early stage of dome development. Regardless of differences, both eclogites experienced HP metamorphism and deformation in the deep crust atc.310 Ma and were exhumed by lithospheric extension—with their host migmatite—near the end of the Variscan orogeny. The deep crust in this region was rapidly exhumed from ~50 to <10 km, where it equilibrated under low‐P/high‐Tconditions, leaving a sparse but compelling record of the deep origin of most of the crust now exposed in the dome.more » « less
-
Abstract The transition between blueschist and eclogite plays an important role in subduction zones via dehydration and densification processes in descending oceanic slabs. There are a number of previous petrological studies describing potential mineral reactions taking place at the transition. An experimental determination of such reactions could help constrain the pressure–temperature conditions of the transition as well as the processes of dehydration. However, previous experimental contributions have focused on the stability of spontaneously formed hydrous minerals in basaltic compositions rather than on reactions among already formed blueschist facies minerals. Therefore, this study conducted three groups of experiments to explore the metamorphic reactions among blueschist facies minerals at conditions corresponding to warm subduction, where faster reaction rates are possible on the time scale of laboratory experiments. The first group of experiments was to establish experimental reversals of the reaction glaucophane+paragonite to jadeite+pyrope+quartz+H2O over the range of 2.2–3.5 GPa and 650–820°C. This reaction has long been treated as key to the blueschist–eclogite transition. However, only the growth of glaucophane+paragonite was observed at the intersectional stability field of both paragonite and jadeite+quartz, confirming thermodynamic calculations that the reaction is not stable in the system Na2O–MgO–Al2O3–SiO2–H2O. The second set of experiments involved unreversed experiments using glaucophane+zoisite ±quartz in low‐Fe and Ca‐rich systems and were run at 1.8–2.4 GPa and 600–780°C. These produced omphacite+paragonite/kyanite+H2O accompanied by compositional shifts in the sodium amphibole, glaucophane, towards sodium–calcium amphiboles such as winchite (☐(CaNa)(Mg4Al)Si8O22(OH)2) and barroisite (☐(CaNa)(Mg3Al2)(AlSi7)O22(OH)2). This suggests that a two‐step dehydration occurs, first involving the breakdown of glaucophane+zoisite towards a paragonite‐bearing assemblage, then the breakdown of paragonite to release H2O. It also indicates that sodium–calcium amphibole can coexist with eclogite phases, thereby extending the thermal stability of amphibole to greater subduction zone depths. The third set of experiments was an experimental investigation at 2.0–2.4 GPa and 630–850°C involving a high‐Fe (Fe#=Fetotal/(Fetotal+Mg)≈0.36) natural glaucophane, synthetic paragonite and their eclogite‐forming reaction products. The results indicated that garnet and omphacite grew over most of these pressure–temperature conditions, which demonstrates the importance of Fe‐rich glaucophane in forming the key eclogite assemblage of garnet+omphacite, even under warm subduction zone conditions. Based on the experiments of this study, reaction between glaucophane+zoisite is instrumental in controlling dehydration processes at the blueschist–eclogite transition during warm subduction.more » « less
-
Thermodynamic modeling is an important technique to interpret metamorphic phase relations and calculate model pressure-temperature (P-T) paths for metamorphic rocks. This study uses representative, coesite-bearing eclogites from the Tso Morari UHP terrane of the NW Himalaya to simulate its prograde metamorphism using multiple modeling programs and thermobarometry. Our modeling yields a peak metamorphism P-T of ~32-33 kbar and ~560-570 °C by the THERMOCALC345 and Theriak-Domino programs (Green et al., 2016), which is ~5 kbar higher in pressure and ~15 °C lower in temperature than that determined by using THERMOCALC333 (White et al., 2007) (~27.8 kbar and ~580 °C). The significantly higher pressure obtained using the THERMOCALC345 and Theriak-Domino is likely a result of the upgrade of thermodynamic parameters of minerals (i.e. garnet Wpy-gr and agr) in the newer a-x relations. The modeled effective bulk compositions and mineral stabilities along the calculated P-T path show different patterns under the two modeling techniques. Modeling by the Theriak-Domino programs is preferred in this case because the results are more consistent with the measured mineral compositions of our rocks. Multiple thermobarometers by garnet-omphacite-phengite, garnet-omphacite, garnet-phengite on the garnet rim, high-Si phengite and matrix omphacite yield a peak metamorphism of ~ 28.5-29.0 kbar and ~ 650-728 °C, which is generally consistent with the modeled P-T path. Based on our model calculations, the initial bulk composition measured by XRF does not represent the reactant bulk composition at the time of garnet nucleation, and this compositional discrepancy possibly is caused by the crystallization of pre-garnet minerals (i.e. hematite), reaction overstepping, or partial reequilibration. In summary, by implementing and evaluating multiple modeling strategies and considering the petrography and metamorphic mineralogy of the rocks, this study finds that the eclogite modeling using Theriak-Domino programs in the Tso Morari terrane provide more consistent metamorphic phase relations and more reasonable thermodynamic simulations regarding fractionation of the bulk composition and prograde metamorphism. References: Green et al. J Metamorph Geol 34, 845-869 (2016) White et al. J Metamorph Geol 25, 511-527 (2007)more » « less
-
Abstract Current models for elastic geobarometry have been developed with the assumption that the host and/or inclusion minerals are elastically isotropic. This assumption has limited applications of elastic thermobarometry to mineral inclusions contained in cubic quasi‐isotropic host minerals (e.g., garnet). Here, we report a new elastic model that takes into account the anisotropic elastic properties and relative crystallographic orientation (RCO) of a host‐inclusion system where both minerals are noncubic. This anisotropic elastic model can be used for host‐inclusion elastic thermobarometric calculations provided that the RCO and elastic properties of both the host and inclusion are known. We then used this anisotropic elastic model to numerically evaluate the effects of elastic anisotropy and RCO on the strains and stresses developed in a quartz inclusion entrapped in a zircon host after exhumation from known entrapmentP‐Tconditions to roomP‐Tconditions. We conclude that the anisotropic quartz‐in‐zircon elastic model is suitable for elastic thermobarometry and may be widely applicable to crustal rocks. Our results demonstrate that isotropic elastic models cannot be used to determine the entire strain state of an elastically anisotropic inclusion contained in an elastically anisotropic host mineral, and therefore may lead to errors on estimated remnant inclusion pressures.more » « less