skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partially embedded metabarrier to suppress surface waves in granular media
The gravity-induced depth-dependent elastic properties of a granular half-space result in multiple dispersive surface modes and demand the consideration of material heterogeneity in metabarrier designs to suppress surface waves. Numerous locally resonant metabarrier configurations have been proposed in the literature to suppress Rayleigh surface waves in homogeneous media, with little focus on extending the designs to a heterogeneous half-space. In this work, a metabarrier comprising partially embedded rod-like resonators to suppress the fundamental dispersive surface wave modes in heterogeneous granular media known as first order PSV (PSV1; where P is the longitudinal mode and SV is the shear-vertical mode) and second order PSV (PSV2) is proposed. The unit-cell dispersion analysis, together with an extensive frequency-domain finite element analysis, reveals preferential hybridization of the PSV1 and PSV2 modes with the longitudinal and flexural resonances of the resonators, respectively. The presence of the cutoff frequency for the longitudinal-resonance hybridized mode facilitates straightforward suppression of the PSV1 mode, while PSV2 mode suppression is possible by tailoring the hybridized flexural resonance modes. These PSV1 and PSV2 bandgaps are realized experimentally in a granular testbed comprising glass beads by embedding 3D-printed resonator rods. Also explored are novel graded metabarriers capable of suppressing both PSV1 and PSV2 modes over a broad frequency range for potential applications in vibration control and seismic isolation.  more » « less
Award ID(s):
1934527
PAR ID:
10560293
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Journal of the Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
156
Issue:
3
ISSN:
0001-4966
Page Range / eLocation ID:
1594 to 1608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An array of surface-mounted prismatic resonators in the path of Rayleigh wave propagation generates two distinct types of surface-wave bandgaps: longitudinal and flexural-resonance bandgaps, resulting from the hybridization of the Rayleigh wave with the longitudinal and flexural resonances of the resonators, respectively. Longitudinal-resonance bandgaps are broad with asymmetric transmission drops, whereas flexural-resonance bandgaps are narrow with nearly symmetric transmission drops. In this paper, we illuminate these observations by investigating the resonances and anti-resonances of the resonator. With an understanding of how the Rayleigh wave interacts with different boundary conditions, we investigate the clamping conditions imposed by prismatic resonators due to the resonator’s resonances and anti-resonances and interpret the resulting transmission spectra. We demonstrate that, in the case of a single resonator, only the resonator’s longitudinal and flexural resonances are responsible for suppressing Rayleigh waves. In contrast, for a resonator array, both the resonances and the anti-resonances of the resonators contribute to the formation of the longitudinal-resonance bandgaps, unlike the flexural-resonance bandgaps where only the flexural resonances play a role. We also provide an explanation for the observed asymmetry in the transmission drop within the longitudinal-resonance bandgaps by assessing the clamping conditions imposed by the resonators. Finally, we evaluate the transmission characteristics of resonator arrays at the anti-resonance frequencies by varying a few key geometric parameters of the unit cell. These findings provide the conceptual understanding required to design optimized resonators based on matching anti-resonance frequencies with the incident Rayleigh wave frequency in order to achieve enhanced Rayleigh wave suppression. 
    more » « less
  2. A locally resonant meta-surface for preferential excitation of a guided mode in a hollow pipe can improve ultrasonic guided wave inspection of pipelines. The proposed meta-surface comprises a periodic arrangement of bonded prismatic rod-like resonators in the circumferential and axial directions of the pipe. We demonstrate the presence of bandgaps for the low-frequency axisymmetric longitudinal modes L(0,1) and L(0,2) and the torsional mode T(0,1). The generated bandgaps can be used to filter the higher harmonics associated with the system nonlinearity to improve nonlinear ultrasonic measurements on pipes. These bandgaps exist even for the non-axisymmetric flexural modes but with their hybridized dispersion curves exhibiting mode-coupling for higher circumferential orders. Moreover, a “partial” bandgap is obtained where preferential transmission of the L(0,2) mode over L(0,1) is possible. We discuss the potential advantages of this partial bandgap to improve pipeline inspections using the L(0,2) mode. Time-domain finite element analyses are used to validate the presence of these bandgaps under radial, circumferential, and axial excitation that mimics the excitation using a ring of piezoelectric transducers. Finally, we discuss the influence of resonator spacing, filling fraction, and the number of resonator rings on the bandgaps for an informed meta-surface design. 
    more » « less
  3. Locally resonant elastodynamic metasurfaces for suppressing surface waves have gained popularity in recent years, especially because of their potential in low-frequency applications such as seismic barriers. Their design strategy typically involves tailoring geometrical features of local resonators to attain a desired frequency bandgap through extensive dispersion analyses. In this paper, a systematic design methodology is presented to conceive these local resonators using topology optimization, where frequency bandgaps develop by matching multiple antiresonances with predefined target frequencies. The design approach modifies an individual resonator's response to unidirectional harmonic excitations in the in-plane and out-of-plane directions, mimicking the elliptical motion of surface waves. Once an arrangement of optimized resonators composes a locally resonant metasurface, frequency bandgaps appear around the designed antiresonance frequencies. Numerical investigations analyze three case studies, showing that longitudinal-like and flexural-like antiresonances lead to nonoverlapping bandgaps unless both antiresonance modes are combined to generate a single and wider bandgap. Experimental data demonstrate good agreement with the numerical results, validating the proposed design methodology as an effective tool to realize locally resonant metasurfaces by matching multiple antiresonances such that bandgaps generated as a result of in-plane and out-of-plane surface wave motion combine into wider bandgaps. 
    more » « less
  4. Improving the photon-magnon coupling strength can be done by tuning the structure of microwave resonators to better interact with the magnon counterpart. Planar resonators accommodating unconventional photon modes beyond the half- and quarter-wavelength designs have been explored due to their optimized mode profiles and potentials for on-chip integration. Here, we designed and fabricated an actively controlled ring resonator supporting the spoof localized surface plasmons (LSPs), and implemented it in the investigation of photon-magnon coupling for hybrid magnonic applications. We demonstrated gain-assisted photon-magnon coupling with the YIG magnon mode under several different sample geometries. The achieved coupling amplification largely benefits from the high quality factor (Q-factor) due to the additional gain provided by a semiconductor amplifier, which effectively increases the Q-factor from a nearly null state (passive resonance) to more than 1000 for a quadrupole LSP mode. Our results suggest an additional control knob for manipulating photon-magnon coupled systems exploiting external controls of gain and loss. 
    more » « less
  5. The mechanical analog of optical frequency combs, phononic frequency combs, has recently been demonstrated in mechanical resonators and has been attributed to coupling between multiple phonon modes. This paper investigates the influence of mode structure on comb generation using a model of two nonlinearly coupled phonon modes. The model predicts that there is only one region within the amplitude-frequency space where combs exist, and this region is a subset of the Arnold tongue that describes a 2:1 autoparametric resonance between the two modes. In addition, the location and shape of the comb region are analytically defined by the resonance frequencies, quality factors, mode coupling strength, and detuning of the driving force frequency from the mechanical resonances, providing clear conditions for comb generation. These results enable comb structure engineering for applications in areas as broad as sensing, communications, and quantum information science. 
    more » « less