Abstract Previous observational and modeling studies have suggested that moisture plays a dominant role in Madden–Julian oscillation (MJO) evolution. Using a realistic MJO simulation by incorporating the role of mesoscale stratiform heating in the Zhang–McFarlane deep convection scheme in the National Center for Atmospheric Research Community Atmosphere Model, version 5.3 (NCAR CAM5.3), this study investigates the factors responsible for the improved MJO simulation by examining moisture variations during different MJO phases. The results of column moist static energy (MSE) and moisture budgets show that during the suppressed phases of MJO, vertical advection acts to increase MSE anomalies for the development of deep convection while radiative heating and surface heat flux decrease MSE. The opposite holds true at the MJO mature phase. However, their roles largely cancel each other, leaving horizontal advection to play a major role in the low-level MSE increase during the suppressed phase of the MJO and MSE decrease after the MJO mature phase. A further analysis combining moisture and temperature budget equations is performed to demonstrate the effects of vertical advection and cloud processes within the column at each level. The vertical profiles of column-confined moisture tendency show that large-scale vertical advection induced by latent heat release and evaporation within shallow convective clouds is also important to the lower-tropospheric moistening during suppressed phases. This confirms the role of shallow convection in low-level moistening ahead of MJO deep convection. Radiative heating is vital across all MJO phases, and its warming effects keep the column humidity anomaly maintained in mature phases. None of these features are reproduced by the standard CAM5.3.
more »
« less
A Cold Lid on a Warm Ocean: Indian Ocean Surface Rain Layers and Their Feedbacks to the Atmosphere
Abstract Ocean surface rain layers (RLs) form when relatively colder, fresher, less dense rain water stably stratifies the upper ocean. RLs cool sea surface temperature (SST) by confining surface evaporative cooling to a thin near‐surface layer, and generate sharp SST gradients between the cool RL and the surrounding ocean. In this study, ocean‐atmosphere coupled simulations of the November 2011 Madden‐Julian Oscillation (MJO) event are conducted with and without RLs to evaluate two pathways for RLs to influence the atmosphere. The first, termed the “SST gradient effect,” arises from the hydrostatic adjustment of the boundary layer to RL‐enhanced SST gradients. The second, termed the “SST effect,” arises from RL‐induced SST reductions impeding the development of deep atmospheric convection. RLs are found to sharpen SST gradients throughout the MJO suppressed and suppressed‐to‐enhanced convection transition phases, but their effect on convection is only detected during the MJO suppressed phase when RL‐induced SST gradients enhance low‐level convergence/divergence and broaden the atmospheric vertical velocity probability distribution below 5 km. The SST effect is more evident than the SST gradient effect during the MJO transition phase, as RLs reduce domain average SST by 0.03 K and narrow vertical velocity distribution, thus delaying onset of deep convection. A delayed SST effect is also identified, wherein frequent RLs during the MJO transition phase isolate accumulated subsurface ocean heat from the atmosphere. The arrival of strong winds at the onset of the MJO active phase erodes RLs and releases subsurface ocean heat to the atmosphere, supporting the development of deep convection.
more »
« less
- Award ID(s):
- 1924659
- PAR ID:
- 10560306
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 4
- ISSN:
- 2169-897X
- Subject(s) / Keyword(s):
- surface fluxes convection rain freshening
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed.more » « less
-
Abstract We examine the hypothesis that the observed connection between the stratospheric quasi-biennial oscillation (QBO) and the strength of the Madden–Julian oscillation (MJO) is modulated by the sea surface temperature (SST)—for example, by El Niño–Southern Oscillation (ENSO). A composite analysis shows that, globally, La Niña SSTs are remarkably similar to those that occur during the easterly phase of the QBO. A maximum covariance analysis suggests that MJO power and SST are strongly linked on both the ENSO time scale and the QBO time scale. We analyze simulations with a modified configuration of version 2 of the Community Earth System Model, with a high top and fine vertical resolution. The model is able to simulate ENSO, the QBO, and the MJO. The ocean-coupled version of the model simulates the QBO, ENSO, and MJO, but does not simulate the observed QBO–MJO connection. When driven with prescribed observed SST anomalies based on composites for QBO east and QBO west (QBOE and QBOW), however, the same atmospheric model produces a modest enhancement of MJO power during QBOE relative to QBOW, as observed. We explore the possibility that the SST anomalies are forced by the QBO itself. Indeed, composite Hovmöller diagrams based on observations show the propagation of QBO zonal wind anomalies all the way from the upper stratosphere to the surface. Also, subsurface ocean temperature composites reveal a similarity between the western Pacific and Indian Ocean subsurface signal between La Niña and QBOE.more » « less
-
null (Ed.)Abstract A normalization method is applied to MJO-scale precipitation and column integrated moist static energy (MSE) anomalies to clearly illustrate the phase evolution of MJO. It is found that the MJO peak phases do not move smoothly, rather they jump from the original convective region to a new location to its east. Such a discontinuous phase evolution is related to the emerging and developing of new congestus convection to the east of the preexisting deep convection. While the characteristic length scale of the phase jump depends on a Kelvin wave response, the associated time scale represents the establishment of an unstable stratification in the front due to boundary layer moistening. The combined effect of the aforementioned characteristic length and time scales determines the observed slow eastward phase speed. Such a phase evolution characteristic seems to support the moisture mode theory of the second type that emphasizes the boundary layer moisture asymmetry, because the moisture mode theory of the first type, which emphasizes the moisture or MSE tendency asymmetry, might favor more “smooth” phase propagation. A longitudinal-location-dependent premoistening mechanism is found based on moisture budget analysis. For the MJO in the eastern Indian Ocean, the premoistening in front of the MJO convection arises from vertical advection, whereas for the MJO over the western Pacific Ocean, it is attributed to the surface evaporating process.more » « less
-
Abstract This study uses shipborne [R/V Roger Revelle and R/V Mirai ] radar, upper-air, ocean, and surface meteorology datasets from the DYNAMO field campaign to investigate the diurnal cycle (DC) of precipitation over the central Indian Ocean related to two distinct Madden-Julian oscillations (MJOs) observed. This study extends earlier studies on the MJO DC by examining the relationship between the DC of convective organization and the local environment and comparing these results on- and off-equator. During the suppressed phase on-equator, the DC of rain rates exhibited two weak maxima at 15 LT and 01 LT, which was largely controlled by the presence of sub-MCS nonlinear precipitation features (PFs). During the active phase on-equator, MCS nonlinear features dominated the rain volume, and the greatest increase in rain rates occurred between 21-01 LT. This maximum coincided with the maxima in convective available potential energy (CAPE) and sensible heat flux, and the column moistened significantly over night. Off-equator, the environment was much drier and there was little large-scale upward motion as a result of limited deep convection. The DC of rain rates during the active phase off-equator was most similar to the DC observed during the suppressed phase on-equator, while rainfall off-equator during the suppressed phase did not vary much throughout the day. The DC of MCS nonlinear PFs closely resembled the DC of rainfall during both phases off-equator, and the DC of environmental parameters, including sea surface temperature, CAPE, and latent heat flux, was typically much weaker off-equator compared to on-equator.more » « less
An official website of the United States government

