This study investigated electric-scooter (e-scooter) rider behaviors and preferences to inform ways to increase safety for e-scooter riders. Data was collected from 329 e-scooter riders via two online and one in-person survey. Survey questions considered rider roadway infrastructure preferences, safety perceptions, and helmet-wearing behavior. Protected bike lanes were more commonly indicated as the safest infrastructure (62.4%) but were less likely to be the most preferred infrastructure (49.7%). Sidewalks were better matched between riders, indicating them as their preferred riding infrastructure (22.7%) and the perceived safest riding infrastructure (24.5%). Riders had low feelings of safety and preference for riding on major/neighborhood streets or on unprotected bike lanes. Riders reported significant concern about being hit by a moving vehicle, running into a pothole/rough roadway, and running into a moving vehicle. In line with the Theory of Planned Behavior, a significant relationship was found between the frequency of riding and helmet-wearing behavior, with more frequent riders being more likely to wear helmets. Findings suggest that existing roadway infrastructure may pose safety challenges and encourage rider-selected workarounds. Public policy may consider emphasizing protected bicycle lane development, rather than helmet mandates, to support e-scooter riding safety for all vulnerable road users. 
                        more » 
                        « less   
                    
                            
                            Gender split and safety behavior of cyclists and e-scooter users in Asbury Park, NJ
                        
                    
    
            Micromobility usage has increased significantly in the last several years as exemplified by shared escooters and privately owned bicycles. In this study, we use traffic camera footage to observe the behavior of over 700 shared e-scooters and privately owned bicycles in Asbury Park, New Jersey. We address the following questions: (1) What are the behavioral differences between bicycle and e-scooter usage in terms of helmet use, bike lane / sidewalk use, gender split, group riding, and by time of day? (2) Are more protective conditions associated with helmet use and bike lane / sidewalk use? And (3) what is the gender split between e-scooter users and cyclists? We find notable differences in safety precautions: around one third of cyclists but no shared e-scooter users were observed wearing a helmet. Among cyclists, helmet use was more prominent among men than women. However, men were more likely to ride on the road than women. We also found that the gender split was narrower among e-scooter users, with a nearly even gender split – as opposed to cyclists, where only 21% of cyclists were observed to be women. Our findings suggest that e-scooter users take fewer safety precautions, in that they are less likely to use a bike lane and to wear a helmet. We conclude with policy implications with regards to safety and gender differences between these two modes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1951890
- PAR ID:
- 10560380
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Case Studies on Transport Policy
- Volume:
- 14
- Issue:
- C
- ISSN:
- 2213-624X
- Page Range / eLocation ID:
- 101073
- Subject(s) / Keyword(s):
- shared e-scooters cyclists observational study
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Electric scooters (or e-scooters) are among the most popular micromobility options that have experienced an enormous expansion in urban transportation systems across the world in recent years. Along with the increased usage of e-scooters, the increasing number of e-scooter-related injuries has also become an emerging global public health concern. However, little is known regarding the risk factors for e-scooter-related crashes and injury crashes. This study consisted of a two-phase survey questionnaire administered to a cohort of e-scooter riders (n = 210), which obtained exposure information on riders’ demographics, riding behaviors (including infrastructure selection), helmet use, and other crash-related factors. The risk ratios of riders’ self-reported involvement in an e-scooter-related crash (i.e., any crash versus no crash) and injury crash (i.e., injury crash versus non-injury crash) were estimated across exposure subcategories using the Negative Binomial regression approach. Males and frequent users of e-scooters were associated with an increased risk of e-scooter-related crashes of any type. For the e-scooter-related injury crashes, more frequently riding on bike lanes (i.e., greater than 25% of the time), either protected or unprotected, was identified as a protective factor. E-scooter-related injury crashes were more likely to occur among females, who reported riding on sidewalks and non-paved surfaces more frequently. The study may help inform public policy regarding e-scooter legislation and prioritize efforts to establish suitable road infrastructure for improved e-scooter riding safety.more » « less
- 
            This analysis focuses on a smartphone app known as “Transit” that is used to unlock shared bicycles in Chicago. Data from the app were utilized in a three-part analysis. First, Transit app bikeshare usage patterns were compared with system-wide bikeshare utilization using publicly available data. The results revealed that hourly usage on weekdays generally follows classical peaked commuting patterns; however, daily usage reached its highest level on weekends. This suggests that there may be large numbers of both commuting and recreational users. The second part aimed to identify distinct user groups via cluster analysis; the results revealed six different clusters: (1) commuters, (2) utility users, (3) leisure users, (4) infrequent commuters, (5) weekday visitors, and (6) weekend visitors. The group unlocking the most shared bikes (45.58% of all Transit app unlocks) was commuters, who represent 10% of Transit app bikeshare users. The third part proposed a trip chaining algorithm to identify “trip chaining bikers.” This term refers to bikeshare users who return a shared bicycle and immediately check out another, presumably to avoid paying extra usage fees for trips over 30 min. The algorithm revealed that 27.3% of Transit app bikeshare users exhibited this type of “bike chaining” behavior. However, this varied substantially between user groups; notably, 66% of Transit app bikeshare users identified as commuters made one or more bike chaining unlocks. The implications are important for bikeshare providers to understand the impact of pricing policies, particularly in encouraging the turn-over of bicycles.more » « less
- 
            The study analyzed the survey data from the 2018 Portland E-scooter Pilot Program and aims to determine (i) who uses shared e-scooters and why they use them, and (ii) whether there is any association between e-scooter usage and the usage of other modes of transportation. To accomplish the first objective, the study identifies the users of shared e-scooters based on their travel behavior using an unsupervised machine learning approach, latent class analysis (LCA). The LCA model grouped e-scooter users into three distinct classes: Class 1 (Recreational Enthusiasts) −occasional and frequent users for recreation, Class 2 (Commute Riders) −frequent users for work, and Class 3 (Intermittent Joyriders) −occasional and one-time users for recreation. Furthermore, a set of ordered logit models is employed to determine the second objective based on the identified classes of e-scooter users, their socio-demographic characteristics, and the built environment variables. The results of ordered logit models revealed that compared to Commute Riders, both Recreational Enthusiasts and Intermittent Joyriders exhibit less interest in increasing the usage of available transportation modes after adopting e-scooters. Notably, low-income e-scooter users show a higher probability of increasing their usage across various transportation modes, including public transportation, driving, shared mobility services, personal bikes, shared bikes, and walking. The study offers valuable insights to guide city planners and policymakers in developing effective strategies for the deployment of e-scooters, targeting each group of users.more » « less
- 
            Cycling as a green transportation mode has been promoted by many governments all over the world. As a result, constructing effective bike lanes has become a crucial task for governments promoting the cycling life style, as well-planned bike paths can reduce traffic congestion and decrease safety risks for both cyclists and motor vehicle drivers. Unfortunately, existing trajectory mining approaches for bike lane planning do not consider key realistic government constraints: 1) budget limitations, 2) construction convenience, and 3) bike lane utilization. In this paper, we propose a data-driven approach to develop bike lane construction plans based on large-scale real world bike trajectory data. We enforce these constraints to formulate our problem and introduce a flexible objective function to tune the benefit between coverage of the number of users and the length of their trajectories. We prove the NP-hardness of the problem and propose greedy-based heuristics to address it. Finally, we deploy our system on Microsoft Azure, providing extensive experiments and case studies to demonstrate the effectiveness of our approach.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    