We introduce an electrochemical approach to recycle carbon fiber (CF) fabrics from amine-epoxy carbon fiber-reinforced polymers (CFRPs). Our novel method utilizes a Kolbe-like mechanism to generate methyl radicals from CH 3 COOH to cleave C–N bonds within epoxy matrices via hydrogen atom abstraction. Recovered CFs are then remanufactured into CFRPs without resizing. 
                        more » 
                        « less   
                    This content will become publicly available on December 2, 2025
                            
                            Fiber and Monomer Recovery from an Amine-Cured Epoxy Composite Using Molten NaOH-KOH
                        
                    
    
            We report a rapid route to reclaim carbon fiber (CF) fabric and monomeric chemicals from amine-epoxy CF-reinforced polymer (CFRP) composites. We use a reaction that occurs in molten NaOH- KOH eutectic to selectively cleave aryl ether and amine linkages, which involves two temperature-dependant mechanisms. Bisphenol-A is isolated in up to quantitative yields, and recovered CF fabric is remanufactured into 2nd-generation CFRPs. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10560381
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Green Chemistry
- ISSN:
- 1463-9262
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography–defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared “permanent” because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N -acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.more » « less
- 
            Abstract A novel, air and thermally stable, yet highly reactive trifluoromethylthiolating reagent, CF 3 SO 2 SCF 3 ( 1 ), was prepared easily in one step from commercially inexpensive CF 3 SO 2 Na and Tf 2 O. 1 is a highly versatile and atom‐efficient reagent that can generate one equivalent of CF 3 S + , two equivalents of CF 3 S − , or a combination of CF 3 S⋅/CF 3 ⋅ species. Many high‐yielding CF 3 S reactions of C , O , S , and N ‐nucleophiles were achieved, including the simple‐step preparations of many reported CF 3 S reagents. 1 delivered a hitherto hard‐to‐synthesize ArOSCF 3 that was followed by a novel CF 3 S II ‐rearrangement. Through Cu or TDAE/Ph 3 P combinations, 1 generated two equivalents of CF 3 S anion species, and the photo‐catalyzed reactions of alkenes with 1 provided CF 3 /CF 3 S‐containing products in high atom‐efficiency.more » « less
- 
            Abstract Alkali-rich aluminous high-pressure phases including calcium-ferrite (CF) type NaAlSiO4 are thought to constitute ~20% by volume of subducted mid-ocean ridge basalt (MORB) under lower mantle conditions. As a potentially significant host for incompatible elements in the deep mantle, knowledge of the crystal structure and physical properties of CF-type phases is therefore important to understanding the crystal chemistry of alkali storage and recycling in the Earth’s mantle. We determined the evolution of the crystal structure of pure CF-NaAlSiO4 and Fe-bearing CF-NaAlSiO4 at pressures up to ~45 GPa using synchrotron-based, single-crystal X-ray diffraction. Using the high-pressure lattice parameters, we also determined a third-order Birch-Murnaghan equation of state, with V0 = 241.6(1) Å3, KT0 = 220(4) GPa, and KT0′ = 2.6(3) for Fe-free CF, and V0 = 244.2(2) Å3, KT0 = 211(6) GPa, and KT0′ = 2.6(3) for Fe-bearing CF. The addition of Fe into CF-NaAlSiO4 resulted in a 10 ± 5% decrease in the stiffest direction of linear compressibility along the c-axis, leading to stronger elastic anisotropy compared with the Fe-free CF phase. The NaO8 polyhedra volume is 2.6 times larger and about 60% more compressible than the octahedral (Al,Si)O6 sites, with K0NaO8 = 127 GPa and K0(Al,Si)O6 ~304 GPa. Raman spectra of the pure CF-type NaAlSiO4 sample shows that the pressure coefficient of the mean vibrational mode, 1.60(7) cm–1/GPa, is slightly higher than 1.36(6) cm−1/GPa obtained for the Fe-bearing CF-NaAlSiO4 sample. The ability of CF-type phases to contain incompatible elements such as Na beyond the stability field of jadeite requires larger and less-compressible NaO8 polyhedra. Detailed high-pressure crystallographic information for the CF phases provides knowledge on how large alkali metals are hosted in alumina framework structures with stability well into the lowermost mantle.more » « less
- 
            null (Ed.)The cancellation factor (CF) is a model for the ratio between gravity wave perturbations in the nightglow intensity to those in the ambient temperature. The CF model allows us to estimate the momentum and energy flux of gravity waves seen in nightglow images, as well as the divergence of these fluxes due to waves propagating through the mesosphere and lower thermosphere region, where the nightglow and the Na layers are located. This study uses a set of wind/temperature Na lidar data and zenith nightglow image observations of the OH and O(1S) emissions to test and validate the CF model from the experimental perspective. The dataset analyzed was obtained during campaigns carried out at the Andes Lidar Observatory (ALO), Chile, in 2015, 2016, and 2017. The modeled CF was compared with observed CF values calculated using the ratio of wave amplitude in nightglow images to that seen in lidar temperatures for vertically propagating waves. We show that, in general, the modeled CF underestimates the observed CF results. However, the O(1S) emission line has better agreement with respect to the modeled value due to its supposedly simpler nightglow photochemistry. In contrast, the observed CF for the OH emission deviates by a factor of two from the modeled CF asymptotic value.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
