This paper presents an extensive parameter study of a non-intrusive and non-seeded laser diagnostic method for measuring one dimensional (1D) rotational temperature of molecular nitrogen (N2) at 165 - 450 K. Compared to previous efforts using molecular oxygen, here resonantly ionized and photoelectron induced fluorescence of molecular nitrogen for thermometry (N2RIPT) was demonstrated. The RIPT signal is generated by directly probing various rotational levels within the rovibrational absorption band of N2, corresponding to the 3-photon transition of N2(X1Σg+,v=0→b1Πu,v′=6) near 285 nm, without involving collisional effects of molecular oxygen and nitrogen. The photoionized N2produces strong first negative band of N2+(B2Σu+−X2Σg+) near 390 nm, 420 nm, and 425 nm. Boltzmann analyses of various discrete fluorescence emission lines yield rotational temperatures of molecular nitrogen. By empirically choosing multiple rotational levels within the absorption band, non-scanning thermometry can be accurately achieved for molecular nitrogen. It is demonstrated that the N2RIPT technique can measure 1D temperature profile up to ∼5 cm in length within a pure N2environment. Multiple wavelengths are thoroughly analyzed and listed that are accurate for RIPT for various temperature ranges. 
                        more » 
                        « less   
                    
                            
                            One-dimensional temperature measurement of supersonic jet flow by resonantly ionized photoemission thermometry of molecular nitrogen
                        
                    
    
            As the field of fluid dynamics progresses, the demand for sophisticated diagnostic methods to accurately assess flow conditions rises. In this work, resonantly ionized photoemission thermometry (RIPT) has been used to directly target and ionize diatomic nitrogen (N2) to measure one-dimensional (1D) temperature profiles in a supersonic jet flow. This technique can be considered non-intrusive as the premise uses resonantly enhanced multiphoton ionization (REMPI) to target molecular nitrogen. This resonance excites N2into absorption bands of the P, Q, and R rotational branches of N2(b1Πu). The ideal (3 + 1) REMPI scheme excites from the ground state and ionizes N2(b1Πu←X1Σg+) where de-excitation results in photoemission from the first negative band of ionizedN2+(B2Σu+→X2Σg+) as nitrogen returns to the ground state. The resulting emission can be observed using an intensified camera, thus permitting inference of the rotational temperature of ground-state molecular nitrogen. A linearly regressive Boltzmann distribution is applied based on previous calibration data for this technique to quantify the temperature along the ionized line. This work applies this technique to a pure N2supersonic jet in cross-flow and counter-flow orientations to demonstrate N2RIPT’s applications in a supersonic flow. Temperature variations are observed at different locations downstream of the exit in cross-flow, and axisymmetric in counter-flow, to generate profiles characterizing the flow dynamics. Due to the collisional effects resulting from the number density of N2at higher pressures, a (3 + 2) REMPI scheme is observed throughout this text. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2409331
- PAR ID:
- 10560442
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Continuum
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2770-0208
- Format(s):
- Medium: X Size: Article No. 1
- Size(s):
- Article No. 1
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Characterization of the thermal gradients within supersonic and hypersonic flows is essential for understanding transition, turbulence, and aerodynamic heating. Developments in novel, impactful non-intrusive techniques are key for enabling flow characterizations of sufficient detail that provide experimental validation datasets for computational simulations. In this work, Resonantly Ionized Photoemission Thermometry (RIPT) signals are directly imaged using an ICCD camera to realize the techniques 1D measurement capability for the first time. The direct imaging scheme presented for oxygen-based RIPT (O2RIPT) uses the previously established calibration data to direct excite various resonant rotational peaks within the S-branch of theC3Π, (v = 2) ← X3Σ(v′ = 0) absorption band of O2. The efficient ionization of O2liberates electrons that induce electron avalanche ionization of local N2molecules generating N2+, which primarily deexcites via photoemissions of the first negative band of . When sufficient lasing energy is used, the ionization region and subsequent photoemission signal is achieved along a 1D line thus, if directly imaged can allow for gas temperature assignments along said line; demonstrated here of up to five centimeters in length. The temperature gradients present within the ensuing shock train of a supersonic under expanded free jet serves as a basis of characterization for this new RIPT imaging scheme. The O2RIPT results are extensively compared and validated against well-known and established techniques (i.e., CARS and CFD). The direct imaging capability fully realizes the technique’s fundamental potential and is expected to be the standard of implementation going forward. The direct imaging capability can play instrumental roles in future scientific studies that rely upon acute characterization of thermal gradients within a medium that cannot be easily resolved by a point. Furthermore, the removal of the spectrometer greatly reduces the cost, complexity, and optical alignment associated with prior RIPT measurements.more » « less
- 
            In this work, a detailed calibration study is performed to establish non-intrusive one-dimensional (1D) rovibrational temperature measurements in unseeded air, based on air resonance enhanced multiphoton ionization thermometry (ART). ART is generated by REMPI (resonance enhanced multi-photon ionization) of molecular oxygen and subsequent avalanche ionization of molecular nitrogen in a single laser pulse. ART signal, the fluorescence from the first negative band of molecular nitrogen, is directly proportional to the 2-photon transition of molecular oxygen C3Π (v = 2) ← X3Σ (v’=0), which is used to determine temperature. Experimentally, hyperfine structures of the O2rotational branches with high temperature sensitivity are selectively excited through a frequency-doubled dye laser. Electron-avalanche ionization of N2results in the fluorescence emissions from the first negative bands of N2+near 390, 425, and 430nm, which are captured as a 1D line by a gated intensified camera. Post processing of the N2+fluorescence yields a 1D thermometry line that is representative of the air temperature. It is demonstrated that the technique provides ART fluorescence of ∼5cm in length in the unseeded air, presenting an attractive thermometry solution for high-speed wind tunnels and other ground test facilities.more » « less
- 
            Air resonance enhanced multiphoton ionization (REMPI) tagging velocimetry (ART) was demonstrated in quiescent and supersonic flows. The ART velocimetry method utilizes a wavelength tunable laser beam to resonantly ionize molecular oxygen in air and generate additional avalanche-type ionization of molecular nitrogen. The fluorescence emissions from the first negative and first positive bands of molecular nitrogen are, thus, produced and used for flow tagging. Detailed characterization of ART was conducted, including the effects of oxygen resonance to fluoresce nitrogen, nitrogen fluorescence spectrum, laser energy deposition into quiescent flow showing minimal perturbations in flow, fluorescence lifetime study at various pressures, and line tagging without breakdown. Pointwise velocity measurements within a supersonic flow from a nominal Mach 1.5 nozzle have been conducted and characterized.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
