skip to main content


This content will become publicly available on December 1, 2025

Title: Lévy-distributed fluctuations in the living cell cortex
The actomyosin cortex is an active material that provides animal cells with a strong but flexible exterior whose mechanics, including non-Gaussian fluctuations and occasional large displacements or cytoquakes, have defied explanation. We study the active fluctuations of the cortex using nanoscale tracking of arrays of flexible microposts adhered to multiple cultured cell types. When the confounding effects of static heterogeneity and tracking error are removed, the fluctuations are found to be heavy tailed and well described by a truncated Lévyα-stable distribution over a wide range of timescales, in multiple cell types. The largest random displacements closely resemble the earlier-reported cytoquakes, but notably, we find these cytoquakes are not due to earthquakelike cooperative rearrangement of many cytoskeletal elements. Rather, they are indistinguishable from chance large excursions of a superdiffusive random process driven by heavy-tailed noise. The noncooperative microscopic events driving these fluctuations need not be larger than the expected elastic energy of single tensed cortical actin filaments, and the implied distribution of microscopic event energies will need to be accounted for by future models of the cytoskeleton.  more » « less
Award ID(s):
1915174
PAR ID:
10560598
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
4
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells’ actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes—intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa–17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.

     
    more » « less
  2. The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to “cytoquakes” or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels. 
    more » « less
  3. Theories in political science are most commonly tested through comparisons of means via difference tests or regression, but some theoretical frameworks offer implications regarding other distributional features. I consider the literature on models of policy change, and their implications for the thickness of the tails in the distribution of policy change. Change in public policy output is commonly characterized by periods of stasis that are punctuated by dramatic change—a heavy-tailed distribution of policy change. Heavy-tailed policy change is used to differentiate between the incrementalism and punctuated equilibrium models of policy change. The evidentiary value of heavy-tailed outputs rests on the assumption that changes in inputs are normally distributed. I show that, in order for conventional assumptions to imply normally distributed inputs, variance in the within-time distribution of inputs must be assumed to be constant over time. I present this result, and then present an empirical example of a possible aggregate policy input—a major public opinion survey item—that exhibits over-time variation in within-time variance. I conclude that the results I present should serve as motivation for those interested in testing the implications of punctuated equilibrium theory to adopt more flexible assumptions regarding, and endeavor to measure, policy inputs.

     
    more » « less
  4. Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have revealed that this remodeling occasionally happens through anomalously large displacements, reminiscent of earthquakes or avalanches. These cytoskeletal avalanches might indicate that the cytoskeleton’s structural response to a changing cellular environment is highly sensitive, and they are therefore of significant biological interest. However, the physics underlying “cytoquakes” is poorly understood. Here, we use agent-based simulations of cytoskeletal self-organization to study fluctuations in the network’s mechanical energy. We robustly observe non-Gaussian statistics and asymmetrically large rates of energy release compared to accumulation in a minimal cytoskeletal model. The large events of energy release are found to correlate with large, collective displacements of the cytoskeletal filaments. We also find that the changes in the localization of tension and the projections of the network motion onto the vibrational normal modes are asymmetrically distributed for energy release and accumulation. These results imply an avalanche-like process of slow energy storage punctuated by fast, large events of energy release involving a collective network rearrangement. We further show that mechanical instability precedes cytoquake occurrence through a machine-learning model that dynamically forecasts cytoquakes using the vibrational spectrum as input. Our results provide a connection between the cytoquake phenomenon and the network’s mechanical energy and can help guide future investigations of the cytoskeleton’s structural susceptibility. 
    more » « less
  5. null (Ed.)
    Eukaryotic cells are mechanically supported by a polymer network called the cytoskeleton, which consumes chemical energy to dynamically remodel its structure. Recent experiments in vivo have revealed that this remodeling occasionally happens through anomalously large displacements, reminiscent of earthquakes or avalanches. These cytoskeletal avalanches might indicate that the cytoskeleton's structural response to a changing cellular environment is highly sensitive, and they are therefore of significant biological interest. However, the physics underlying "cytoquakes" is poorly understood. Here, we use agent-based simulations of cytoskeletal self-organization to study fluctuations in the network's mechanical energy. We robustly observe non-Gaussian statistics and asymmetrically large rates of energy release compared to accumulation in a minimal cytoskeletal model. The large events of energy release are found to correlate with large, collective displacements of the cytoskeletal filaments. We also find that the changes in the localization of tension and the projections of the network motion onto the vibrational normal modes are asymmetrically distributed for energy release and accumulation. These results imply an avalanche-like process of slow energy storage punctuated by fast, large events of energy release involving a collective network rearrangement. We further show that mechanical instability precedes cytoquake occurrence through a machine learning model that dynamically forecasts cytoquakes using the vibrational spectrum as input. Our results provide the first connection between the cytoquake phenomenon and the network's mechanical energy and can help guide future investigations of the cytoskeleton's structural susceptibility. 
    more » « less