skip to main content


Title: Active gels, heavy tails, and the cytoskeleton
The eukaryotic cell's cytoskeleton is a prototypical example of an active material: objects embedded within it are driven by molecular motors acting on the cytoskeleton, leading to anomalous diffusive behavior. Experiments tracking the behavior of cell-attached objects have observed anomalous diffusion with a distribution of displacements that is non-Gaussian, with heavy tails. This has been attributed to “cytoquakes” or other spatially extended collective effects. We show, using simulations and analytical theory, that a simple continuum active gel model driven by fluctuating force dipoles naturally creates heavy power-law tails in cytoskeletal displacements. We predict that this power law exponent should depend on the geometry and dimensionality of where force dipoles are distributed through the cell; we find qualitatively different results for force dipoles in a 3D cytoskeleton and a quasi-two-dimensional cortex. We then discuss potential applications of this model both in cells and in synthetic active gels.  more » « less
Award ID(s):
1945141
NSF-PAR ID:
10325813
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
43
ISSN:
1744-683X
Page Range / eLocation ID:
9876 to 9892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.

     
    more » « less
  2. Chromatin – the functional form of DNA in the cell – exists in the form of a polymer immersed in a nucleoplasmic fluid inside the cell nucleus. Both chromatin and nucleoplasm are subject to active forces resulting from local biological processes. This activity leads to non-equilibrium phenomena, affecting chromatin organization and dynamics, yet the underlying physics is far from understood. Here, we expand upon a previously developed two-fluid model of chromatin and nucleoplasm by considering three types of activity in the form of force dipoles – two with both forces of the dipole acting on the same fluid (either polymer or nucleoplasm) and a third, with two forces pushing chromatin and solvent in opposite directions. We find that this latter type results in the most significant flows, dominating over most length scales of interest. Due to the friction between the fluids and their viscosity, we observe emergent screening length scales in the active flows of this system. We predict that the presence of different activity types and their relative strengths can be inferred from observing the power spectra of hydrodynamic fluctuations in the chromatin and the nucleoplasm. 
    more » « less
  3. The cell cytoskeleton is a dynamic assembly of semi-flexible filaments and motor proteins. The cytoskeleton mechanics is a determining factor in many cellular processes, including cell division, cell motility and migration, mechanotransduction and intracellular transport. Mechanical properties of the cell, which are determined partly by its cytoskeleton, are also used as biomarkers for disease diagnosis and cell sorting. Experimental studies suggest that in whole cell scale, the cell cytoskeleton and its permeating cytosol may be modelled as a two-phase poro-viscoelastic (PVE) material composed of a viscoelastic (VE) network permeated by a viscous cytosol. We present the first general solution to this two-phase system in spherical coordinates, where we assume that both the fluid and network phases are in their linear response regime. Specifically, we use generalized linear incompressible and compressible VE constitutive equations to describe the stress in the fluid and network phases, respectively. We assume a constant permeability that couples the fluid and network displacements. We use these general solutions to study the motion of a rigid sphere moving under a constant force inside a two-phase system, composed of a linear elastic network and a Newtonian fluid. It is shown that the network compressibility introduces a slow relaxation of the sphere and non-monotonic network displacements with time along the direction of the applied force. Our results can be applied to particle-tracking microrheology to differentiate between PVE and VE materials, and to measure the fluid permeability as well as VE properties of the fluid and the network phases. 
    more » « less
  4. Abstract

    The actomyosin cytoskeleton enables cells to resist deformation, crawl, change their shape and sense their surroundings. Despite decades of study, how its molecular constituents can assemble together to form a network with the observed mechanics of cells remains poorly understood. Recently, it has been shown that the actomyosin cortex of quiescent cells can undergo frequent, abrupt reconfigurations and displacements, called cytoquakes. Notably, such fluctuations are not predicted by current physical models of actomyosin networks, and their prevalence across cell types and mechanical environments has not previously been studied. Using micropost array detectors, we have performed high-resolution measurements of the dynamic mechanical fluctuations of cells’ actomyosin cortex and stress fiber networks. This reveals cortical dynamics dominated by cytoquakes—intermittent events with a fat-tailed distribution of displacements, sometimes spanning microposts separated by 4 μm, in all cell types studied. These included 3T3 fibroblasts, where cytoquakes persisted over substrate stiffnesses spanning the tissue-relevant range of 4.3 kPa–17 kPa, and primary neonatal rat cardiac fibroblasts and myofibroblasts, human embryonic kidney cells and human bone osteosarcoma epithelial (U2OS) cells, where cytoquakes were observed on substrates in the same stiffness range. Overall, these findings suggest that the cortex self-organizes into a marginally stable mechanical state whose physics may contribute to cell mechanical properties, active behavior and mechanosensing.

     
    more » « less
  5. The gradient noise (GN) in the stochastic gradient descent (SGD) algorithm is often considered to be Gaussian in the large data regime by assuming that the classical central limit theorem (CLT) kicks in. This assumption is often made for mathematical convenience, since it enables SGD to be analyzed as a stochastic differential equation (SDE) driven by a Brownian motion. We argue that the Gaussianity assumption might fail to hold in deep learning settings and hence render the Brownian motion-based analyses inappropriate. Inspired by non-Gaussian natural phenomena, we consider the GN in a more general context and invoke the generalized CLT (GCLT), which suggests that the GN converges to a heavy-tailed -stable random variable. Accordingly, we propose to analyze SGD as an SDE driven by a Lévy motion. Such SDEs can incur ‘jumps’, which force the SDE transition from narrow minima to wider minima, as proven by existing metastability theory. To validate the -stable assumption, we conduct extensive experiments on common deep learning architectures and show that in all settings, the GN is highly non-Gaussian and admits heavy-tails. We further investigate the tail behavior in varying network architectures and sizes, loss functions, and datasets. Our results open up a different perspective and shed more light on the belief that SGD prefers wide minima. 
    more » « less