Abstract The Protein Data Bank (PDB) archives 3D structures of macromolecules determined experimentally using various methods. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) consortium. Research Collaboratory for Structural Bioinformatics (RCSB) PDB, the US data center for the PDB, provides streamlined access to >240 000 structures through a variety of research-focused tools on RCSB.org. In addition, RCSB.org makes available over 1 million computed structure models (CSMs) predicted using deep learning methods and archived in the AlphaFold Database and ModelArchive. The PDB-IHM system was developed as a wwPDB project based on community recommendations to archive structures determined using integrative/hybrid methods (IHM). These structures are computed by combining information from multiple experimental and computational techniques to overcome the limitations of traditional single methods (e.g. macromolecular crystallography, 3D electron microscopy, nuclear magnetic resonance spectroscopy). In 2024, PDB-IHM was unified with the PDB to archive integrative structures alongside single-method experimental structures. These integrative structures have been made accessible via the RCSB.org website, facilitating efficient delivery of IHM data to a broad community of PDB users. Herein, we describe the expanded capabilities of RCSB.org that support discovery, analysis, and visualization of integrative structures together with single-method experimental structures and CSMs.
more »
« less
HARP Analysis of cryoEM Structures in the PDB
This repository contains the results of a hierarchical atomic resolution perception (HARP) calculation on each of the cryoEM structures deposited in the Protein Data Bank (PDB) prior to January 1, 2023. Top-level group names are the PDB IDs of the structures. HDF5 group attributes for each entry are certain metadata extracted from the mmCIF files associated with each entry. HDF5 datasets within each group are indexed relative to each other (i.e., are of the same length).
more »
« less
- Award ID(s):
- 2137630
- PAR ID:
- 10560633
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure. Following the FAIR (Findable, Accessible, Interoperable and Reusable) principles, PDB-Dev ensures that the results of integrative structure determinations are freely accessible to everyone.more » « less
-
Abstract The Protein Data Bank (PDB) archive is a rich source of information in the form of atomic‐level three‐dimensional (3D) structures of biomolecules experimentally determined using macromolecular crystallography, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (3DEM). Originally established in 1971 as a resource for protein crystallographers to freely exchange data, today PDB data drive research and education across scientific disciplines. In 2011, the online portal PDB‐101 was launched to support teachers, students, and the general public in PDB archive exploration (pdb101.rcsb.org). Maintained by the Research Collaboratory for Structural Bioinformatics PDB, PDB‐101 aims to help train the next generation of PDB users and to promote the overall importance of structural biology and protein science to nonexperts. Regularly published features include the highly popularMolecule of the Monthseries, 3D model activities, molecular animation videos, and educational curricula. Materials are organized into various categories (Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure Determination) and searchable by keyword. A biennial health focus frames new resource creation and provides topics for annual video challenges for high school students. Web analytics document that PDB‐101 materials relating to fundamental topics (e.g., hemoglobin, catalase) are highly accessed year‐on‐year. In addition, PDB‐101 materials created in response to topical health matters (e.g., Zika, measles, coronavirus) are well received. PDB‐101 shows how learning about the diverse shapes and functions of PDB structures promotes understanding of all aspects of biology, from the central dogma of biology to health and disease to biological energy.more » « less
-
Abstract Since 1971, the Protein Data Bank (PDB) has served as the single global archive for experimentally determined 3D structures of biological macromolecules made freely available to the global community according to the FAIR principles of Findability–Accessibility–Interoperability–Reusability. During the first 50 years of continuous PDB operations, standards for data representation have evolved to better represent rich and complex biological phenomena. Carbohydrate molecules present in more than 14,000 PDB structures have recently been reviewed and remediated to conform to a new standardized format. This machine-readable data representation for carbohydrates occurring in the PDB structures and the corresponding reference data improves the findability, accessibility, interoperability and reusability of structural information pertaining to these molecules. The PDB Exchange MacroMolecular Crystallographic Information File data dictionary now supports (i) standardized atom nomenclature that conforms to International Union of Pure and Applied Chemistry-International Union of Biochemistry and Molecular Biology (IUPAC-IUBMB) recommendations for carbohydrates, (ii) uniform representation of branched entities for oligosaccharides, (iii) commonly used linear descriptors of carbohydrates developed by the glycoscience community and (iv) annotation of glycosylation sites in proteins. For the first time, carbohydrates in PDB structures are consistently represented as collections of standardized monosaccharides, which precisely describe oligosaccharide structures and enable improved carbohydrate visualization, structure validation, robust quantitative and qualitative analyses, search for dendritic structures and classification. The uniform representation of carbohydrate molecules in the PDB described herein will facilitate broader usage of the resource by the glycoscience community and researchers studying glycoproteins.more » « less
-
Structures of many large biomolecular assemblies are now being determined using integrative approaches. In these approaches, information derived from multiple experimental and computational methods is combined to compute three-dimensional structures of multi-protein complexes and other macromolecular machines. A standalone prototype data resource for integrative structures called PDB-Dev was built, based on recommendations of the Integrative and Hybrid Methods (IHM) Task Force of the Worldwide Protein Data Bank (wwPDB). This effort included developing data standards and software tools for collecting, curating, validating, visualizing, archiving, and disseminating integrative structures that span diverse spatiotemporal scales and conformational states. Mechanisms have been created to validate integrative structures based on the experimental data underpinning them. Building upon this foundational framework, PDB-Dev has been further expanded to handle large dynamic macromolecular systems and integrative structures that combine, for example, experimental restraints with atomic coordinates computed by machine learning algorithms. Data standards and supporting tools have also been extended to capture information about biomolecular dynamics, such as conformational transitions and related kinetic data derived from biophysical methods. Recently, PDB-Dev was unified with the PDB archive and rebranded as PDB-IHM (pdb-ihm.org), further promoting FAIR (Findable, Accessible, Interoperable, and Reusable) principles of data stewardship for integrative structural biology.more » « less
An official website of the United States government
