Abstract Progress toward achieving Sustainable Development Goal 6, clean water and sanitation for all, is behind schedule and faces substantial financial challenges. Rigorous water, sanitation, and hygiene (WASH) interventions have underperformed, casting doubt on their efficacy and potentially undermining confidence in WASH funding and investments. But these interventions have leaned on a narrow set of WASH indicators—linear growth and diarrhea—that reflect a 20th‐century prioritization of microbiological water quality as the most important measurement of WASH intervention success. Even when water is microbiologically safe, hundreds of millions of people face harassment, assault, injury, poisoning, anxiety, exhaustion, depression, social exclusion, discrimination, subjugation, hunger, debt, or work, school, or family care absenteeism when retrieving or consuming household water. Measures of WASH intervention success should incorporate these impacts to reinforce the WASH value proposition. We present a way forward for implementing a monitoring and evaluation paradigm shift that can help achieve transformative WASH. This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Value of WaterHuman Water > Methods
more »
« less
Impact of a multi-pronged cholera intervention in an endemic setting
Abstract Cholera is a bacterial water-borne diarrheal disease transmitted via the fecal-oral route that causes high morbidity in sub-Saharan Africa and Asia. It is preventable with vaccination, and Water, Sanitation, and Hygiene (WASH) improvements. However, the impact of vaccination in endemic settings remains unclear. Cholera is endemic in the city of Kalemie, on the shore of Lake Tanganyika, in the Democratic Republic of Congo, where both seasonal mobility and the lake, a potential environmental reservoir, may promote transmission. Kalemie received a vaccination campaign and WASH improvements in 2013-2016. We assessed the impact of this intervention to inform future control strategies in endemic settings. We fit compartmental models considering seasonal mobility and environmentally-based transmission. We estimated the number of cases the intervention avoided, and the relative contributions of the elements promoting local cholera transmission. We estimated the intervention avoided 5,259 cases (95% credible interval: 1,576.6-11,337.8) over 118 weeks. Transmission did not rely on seasonal mobility and was primarily environmentally-driven. Removing environmental exposure or contamination could control local transmission. Repeated environmental exposure could maintain high population immunity and decrease the impact of vaccination in similar endemic areas. Addressing environmental exposure and contamination should be the primary target of interventions in such settings. Author summaryCholera is a major global health concern that causes high morbidity. It is a bacterial water-borne disease that can be transmitted via the fecal-oral route or the ingestion of contaminated water. Hence, both population mobility and environmental exposure can promote cholera persistence. The primary tools to prevent cholera include vaccination and Water, Sanitation, and Hygiene (WASH) improvements. The effectiveness of these interventions is well understood in epidemic settings, but their impact in endemic settings is unclear. Achieving cholera elimination requires disentangling the contributors to transmission, specifically population mobility and aquatic reservoirs, and assessing the impact of interventions performed in endemic settings.This study focuses on Kalemie, a cholera endemic city in the Democratic Republic of Congo, on shore of a lake that serves as a potential environmental reservoir. It quantifies the short-term impact of an intervention that used targeted vaccination and WASH. The study shows that the impact of vaccination was dampened by very high background immunity due to constant environmental exposure. This suggests that WASH improvements should be the primary intervention in such settings despite the time- and resource-intensive nature of implementation.
more »
« less
- Award ID(s):
- 2015273
- PAR ID:
- 10560799
- Publisher / Repository:
- medRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- medRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lau, Eric HY (Ed.)Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often considered the gold standard of evidence for infectious disease interventions, but their results cannot immediately generalize to other contexts (e.g., different populations, interventions, or disease burdens). Mechanistic models are one approach to generalizing findings between contexts, but infectious disease transmission models (IDTMs) are not immediately suited for analyzing RCTs, since they often rely on time-series surveillance data. We developed an IDTM framework to explain relative risk outcomes of an infectious disease RCT and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize the RCT results to other contexts and conditions. We developed this compartmental IDTM framework to account for key WASH RCT factors: i) transmission across multiple environmental pathways, ii) multiple interventions applied individually and in combination, iii) adherence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled in the study. We employed a hybrid sampling and estimation framework to obtain posterior estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction number R 0 for the control arm (1.10, 95% CrI: 1.07, 1.16) corresponded to an endemic prevalence of 9.5% (95% CrI: 7.4, 13.7%) in the absence of interventions or preexisting WASH conditions. No single pathway was likely able to sustain transmission: pathway-specific R 0 s for water, fomites, and all other pathways were 0.42 (95% CrI: 0.03, 0.97), 0.20 (95% CrI: 0.02, 0.59), and 0.48 (95% CrI: 0.02, 0.94), respectively. An IDTM approach to evaluating RCTs can complement RCT analysis by providing a rigorous framework for generating data-driven hypotheses that explain trial findings, particularly unexpected null results, opening up existing data to deeper epidemiological understanding.more » « less
-
null (Ed.)We present a new mathematical model to investigate the transmission dynamics of cholera under disease control measures that include education programs and water sanitation. The model incorporates the impact of education programs into the disease transmission rates and that of water sanitation into the environmental pathogen dynamics. We conduct a detailed analysis to the autonomous system of the model and establish the local and global stabilities of its equilibria that characterize the threshold dynamics of cholera. We then perform an optimal control study on the general model with time-dependent controls and explore effective approaches to implement the education programs and water sanitation while balancing their costs. Our analysis and simulation highlight the complex interaction among the direct and indirect transmission pathways of the disease, the intrinsic growth of the environmental pathogen and the impact of multiple control measures, and their roles in collectively shaping the transmission dynamics of cholera.more » « less
-
Abstract Improving water governance is a top priority for addressing the global water crisis. Yet, there is a dearth of empirical data examining whether better water governance is associated with lower water insecurity and improved well-being. We, therefore, pooled household data from two Sustainable Water Effectiveness Reviews conducted by Oxfam GB in Zambia (n = 997) and the Democratic Republic of Congo (DRC, n = 1,071) to assess the relationship between perceived water governance (using a 12-item indicator), water insecurity [using the Household Water Insecurity Experiences (HWISE) Scale], and four indicators of well-being: life satisfaction, drinking unsafe water, diarrhea, and resilience to cholera outbreak. Using generalized structural equation models controlling for wealth and primary water source, each point increase in water governance score was associated with a 0.69-point decrease in HWISE Scale scores. Good water governance was also directly associated with greater odds of life satisfaction (aOR 1.24) and lower odds of both drinking unsafe water (aOR 0.91) and severe cholera impact (aOR 0.92). Furthermore, the relationships between water governance and drinking unsafe water, diarrhea, and cholera impact were mediated by household water insecurity. Improving water governance has the potential to meaningfully impact entrenched public health issues through changes in water insecurity.more » « less
-
Summary Malaria is an infectious disease affecting a large population across the world, and interventions need to be efficiently applied to reduce the burden of malaria. We develop a framework to help policy-makers decide how to allocate limited resources in realtime for malaria control. We formalize a policy for the resource allocation as a sequence of decisions, one per intervention decision, that map up-to-date disease related information to a resource allocation. An optimal policy must control the spread of the disease while being interpretable and viewed as equitable to stakeholders. We construct an interpretable class of resource allocation policies that can accommodate allocation of resources residing in a continuous domain and combine a hierarchical Bayesian spatiotemporal model for disease transmission with a policy-search algorithm to estimate an optimal policy for resource allocation within the pre-specified class. The estimated optimal policy under the proposed framework improves the cumulative long-term outcome compared with naive approaches in both simulation experiments and application to malaria interventions in the Democratic Republic of the Congo.more » « less
An official website of the United States government

