skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of fendiline treatment in VP40 system with nucleation-elongation process: a computational model of Ebola virus matrix protein assembly
Ebola virus (EBOV) infection is threatening human health, especially in Central and West Africa. Limited clinical trials and the requirement of biosafety level-4 laboratories hinder experimental work to advance our understanding of EBOV and the evaluation of treatment. In this work, we use a computational model to study the assembly and budding process of EBOV and evaluate the effect of fendiline on these processes in the context of fluctuating host membrane lipid levels. Our results demonstrate for the first time that the assembly of VP40 filaments may follow the nucleation-elongation theory, as this mechanism is critical to maintaining a pool of VP40 dimers for the maturation and production of virus-like particles (VLPs). We further find that this nucleation-elongation process is likely influenced by fluctuating phosphatidylserine (PS), which can complicate the efficacy of lipid-targeted therapies like fendiline, a drug that lowers cellular PS levels. Our results indicate that fendiline-induced PS reduction may actually increase VLP production at earlier time points (24 h) and under low fendiline concentrations (≤2 µM). However, this effect is transient and does not change the conclusion that fendiline generally decreases VLP production. In the context of fluctuating PS levels, we also conclude that fendiline can be more efficient at the late stage of VLP budding relative to earlier phases. Combination therapy with a VLP budding step-targeted drug may therefore further increase the treatment efficiency of fendiline. Finally, we also show that fendiline-induced PS reduction more effectively lowers VLP production when VP40 expression is high. Taken together, our results provide critical quantitative information on how fluctuating lipid levels (PS) affect EBOV assembly and egress and how this mechanism can be disrupted by lipid-targeting molecules like fendiline. Ebola virus (EBOV) infection can cause deadly hemorrhagic fever, which has a mortality rate of ~50%–90% without treatment. The recent outbreaks in Uganda and the Democratic Republic of the Congo illustrate its threat to human health. Though two antibody-based treatments were approved, mortality rates in the last outbreak were still higher than 30%. This can partly be due to the requirement of advanced medical facilities for current treatments. As a result, it is very important to develop and evaluate new therapies for EBOV infection, especially those that can be easily applied in the developing world. The significance of our research is that we evaluate the potential of lipid-targeted treatments in reducing EBOV assembly and egress. We achieved this goal using the VP40 system combined with a computational approach, which both saves time and lowers cost compared to traditional experimental studies and provides innovative new tools to study viral protein dynamics.  more » « less
Award ID(s):
2143866
PAR ID:
10560809
Author(s) / Creator(s):
; ; ;
Editor(s):
Zhang, Leiliang
Publisher / Repository:
ASM Journals
Date Published:
Journal Name:
Microbiology Spectrum
Volume:
12
Issue:
4
ISSN:
2165-0497
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ebola virus (EBOV) matrix protein VP40 can assemble and bud as virus-like particles (VLPs) when expressed alone in mammalian cells. Nucleoprotein (NP) could be recruited to VLPs as inclusion body (IB) when co-expressed, and increase VLP production. However, the mechanism behind it remains unclear. Here, we use a computational approach to study NP-VP40 interactions. Our simulations indicate that NP may enhance VLP production through stabilizing VP40 filaments and accelerating the VLP budding step. Further, both the relative timing and amount of NP expression compared to VP40 are important for the effective production of IB-containing VLPs. We predict that relative NP/VP40 expression ratio and time are important for efficient production of IB-containing VLPs. We conclude that disrupting the expression timing and amount of NP and VP40 could provide new avenues to treat EBOV infection. This work provides quantitative insights into EBOV proteins interactions and how virion generation and drug efficacy could be influenced. 
    more » « less
  2. Abstract Ebola virus (EBOV) and Marburg virus (MARV) are zoonotic filoviruses that cause hemorrhagic fever in humans. Correlative data implicate bats as natural EBOV hosts, but neither a full-length genome nor an EBOV isolate has been found in any bats sampled. Here, we model filovirus infection in the Jamaican fruit bat (JFB),Artibeus jamaicensis,by inoculation with either EBOV or MARV through a combination of oral, intranasal, and subcutaneous routes. Infection with EBOV results in systemic virus replication and oral shedding of infectious virus. MARV replication is transient and does not shed. In vitro, JFB cells replicate EBOV more efficiently than MARV, and MARV infection induces innate antiviral responses that EBOV efficiently suppresses. Experiments using VSV pseudoparticles or replicating VSV expressing the EBOV or MARV glycoprotein demonstrate an advantage for EBOV entry and replication early, respectively, in JFB cells. Overall, this study describes filovirus species-specific phenotypes for both JFB and their cells. 
    more » « less
  3. Abstract Since the most recent outbreak, the Ebola virus (EBOV) epidemic remains one of the world’s public health and safety concerns. EBOV is a negative-sense RNA virus that can infect humans and non-human primates, and causes hemorrhagic fever. It has been proposed that the T-cell immunoglobulin and mucin domain (TIM) family proteins act as cell surface receptors for EBOV, and that the interaction between TIM and phosphatidylserine (PS) on the surface of EBOV mediates the EBOV–host cell attachment. Despite these initial findings, the biophysical properties of the TIM-EBOV interaction, such as the mechanical strength of the TIM-PS bond that allows the virus-cell interaction to resist external mechanical perturbations, have not yet been characterized. This study utilizes single-molecule force spectroscopy to quantify the specific interaction forces between TIM-1 or TIM-4 and the following binding partners: PS, EBOV virus-like particle, and EBOV glycoprotein/vesicular stomatitis virus pseudovirion. Depending on the loading rates, the unbinding forces between TIM and ligands ranged from 40 to 100 pN, suggesting that TIM-EBOV interactions are mechanically comparable to previously reported adhesion molecule–ligand interactions. The TIM-4–PS interaction is more resistant to mechanical force than the TIM-1–PS interaction. We have developed a simple model for virus–host cell interaction that is driven by its adhesion to cell surface receptors and resisted by membrane bending (or tension). Our model identifies critical dimensionless parameters representing the ratio of deformation and adhesion energies, showing how single-molecule adhesion measurements relate quantitatively to the mechanics of virus adhesion to the cell. 
    more » « less
  4. The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex. 
    more » « less
  5. Longnecker, Richard M. (Ed.)
    ABSTRACT Nuclear envelope budding in herpesvirus nuclear egress may be negatively regulated, since the pUL31/pUL34 nuclear egress complex heterodimer can induce membrane budding without capsids when expressed ectopically or on artificial membranes in vitro , but not in the infected cell. We have previously described a pUL34 mutant that contained alanine substitutions at R158 and R161 and that showed impaired growth, impaired pUL31/pUL34 interaction, and unregulated budding. Here, we determine the phenotypic contributions of the individual substitutions to these phenotypes. Neither substitution alone was able to reproduce the impaired growth or nuclear egress complex (NEC) interaction phenotypes. Either substitution, however, could fully reproduce the unregulated budding phenotype, suggesting that misregulated budding may not substantially impair virus replication. In addition, the R158A substitution caused relocalization of the NEC to intranuclear punctate structures and recruited lamin A/C to these structures, suggesting that this residue might be important for recruitment of kinases for dispersal of nuclear lamins. IMPORTANCE Herpesvirus nuclear egress is a complex, regulated process coordinated by two virus proteins that are conserved among the herpesviruses that form a heterodimeric nuclear egress complex (NEC). The NEC drives budding of capsids at the inner nuclear membrane and recruits other viral and host cell proteins for disruption of the nuclear lamina, membrane scission, and fusion. The structural basis of individual activities of the NEC, apart from membrane budding, are not clear, nor is the basis of the regulation of membrane budding. Here, we explore the properties of NEC mutants that have an unregulated budding phenotype, determine the significance of that regulation for virus replication, and also characterize a structural requirement for nuclear lamina disruption. 
    more » « less