skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pollen specialist bee species are accurately predicted from visitation, occurrence and phylogenetic data
Abstract An animal’s diet breadth is a central aspect of its life history, yet the factors determining why some species have narrow dietary breadths (specialists) and others have broad dietary breadths (generalists) remain poorly understood. This challenge is pronounced in herbivorous insects due to incomplete host plant data across many taxa and regions. Here, we develop and validate machine learning models to predict pollen diet breadth in bees, using a bee phylogeny and occurrence data for 682 bee species native to the United States, aiming to better understand key drivers. We found that pollen specialist bees made an average of 72.9% of their visits to host plants and could be predicted with high accuracy (mean 94%). Our models predicted generalist bee species, which made up a minority of the species in our dataset, with lower accuracy (mean 70%). The models tested on spatially and phylogenetically blocked data revealed that the most informative predictors of diet breadth are plant phylogenetic diversity, bee species’ geographic range, and regional abundance. Our findings also confirm that range size is predictive of diet breadth and that both male and female specialist bees mostly visit their host plants. Overall, our results suggest we can use visitation data to predict specialist bee species in regions and for taxonomic groups where diet breadth is unknown, though predicting generalists may be more challenging. These methods can thus enhance our understanding of plant-pollinator interactions, leading to improved conservation outcomes and a better understanding of the pollination services bees provide.  more » « less
Award ID(s):
2102006
PAR ID:
10560845
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Oecologia
Volume:
207
Issue:
1
ISSN:
0029-8549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Growing evidence suggests that organisms with narrow niche requirements are particularly disadvantaged in small habitat patches, typical of fragmented landscapes. However, the mechanisms behind this relationship remain unclear. Dietary specialists may be particularly constrained by the availability of their food resources as habitat area shrinks. For herbivorous insects, host plants may be filtered out of small habitat fragments by neutral sampling processes and deterministic plant community shifts due to altered microclimates, edge effects and browsing by ungulates.We examined the relationship between forest fragment area and the abundance of dietary‐specialist and dietary‐generalist larval Lepidoptera (caterpillars) and their host plants in the northeastern USA. We surveyed caterpillars and their host plants over 3 years in equal‐sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested whether the abundances and species richness of dietary specialists increased more than those of dietary generalists with increasing fragment area and, if so, whether the difference could be explained by reduced host plant availability or increased browsing by white‐tailed deer (Odocoileus virginianus).The overall abundance of dietary specialists was positively related to fragment area; the relationship was substantially weaker for dietary generalists. There was notable variation among species within diet breadth groups, however. There was no effect of fragment area on the diversity of dietary‐specialist or dietary‐generalist caterpillars. Deer activity was not related to the abundances of either dietary‐generalist or dietary‐specialist caterpillars.Plant community composition was strongly associated with fragment area. Larger fragments were more likely to include host plants for both dietary‐specialist and dietary‐generalist caterpillars. Deer activity was correlated with decreased host plant availability for both groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary specialists were more likely to lack host plants in fragments, the relationship between fragment area and host availability did not depend on caterpillar diet breadth.This study provides further evidence that decreasing patch area disproportionately impacts specialist consumers. Because this relationship was derived from equal‐sized plots, it is robust to some criticisms levelled at fragmentation research. The mechanisms for specialist consumer declines, however, remain elusive. 
    more » « less
  2. null (Ed.)
    Mounting evidence suggests that microbes found in the pollen provisions of wild and solitary bees are important drivers of larval development. As these microbes are also known to be transmitted via the environment, most likely from flowers, the diet breadth of a bee may affect the diversity and identity of the microbes that occur in its pollen provisions. Here, we tested the hypothesis that, due to the importance of floral transmission of microbes, diet breadth affects pollen provision microbial community composition. We collected pollen provisions at four sites from the polylectic bee Osmia lignaria and the oligolectic bee Osmia ribifloris. We used high-throughput sequencing of the bacterial 16S rRNA gene to characterize the bacteria found in these provisions. We found minimal overlap in the specific bacterial variants in pollen provisions across the host species, even when the bees were constrained to foraging from the same flowers in cages at one site. Similarly, there was minimal overlap in the specific bacterial variants across sites, even within the same host species. Together, these findings highlight the importance of environmental transmission and host specific sorting influenced by diet breadth for microbes found in pollen provisions. Future studies addressing the functional consequences of this filtering, along with tests for differences between more species of oligoletic and polylectic bees will provide rich insights into the microbial ecology of solitary bees. 
    more » « less
  3. null (Ed.)
    Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment. 
    more » « less
  4. Abstract For most animals, the microbiome is key for nutrition and pathogen defence, and is often shaped by diet. Corbiculate bees, including honey bees, bumble bees, and stingless bees, share a core microbiome that has been shaped, at least in part, by the challenges associated with pollen digestion. However, three species of stingless bees deviate from the general rule of bees obtaining their protein exclusively from pollen (obligate pollinivores) and instead consume carrion as their sole protein source (obligate necrophages) or consume both pollen and carrion (facultative necrophages). These three life histories can provide missing insights into microbiome evolution associated with extreme dietary transitions. Here, we investigate, via shotgun metagenomics, the functionality of the microbiome across three bee diet types: obligate pollinivory, obligate necrophagy, and facultative necrophagy. We find distinct differences in microbiome composition and gene functional profiles between the diet types. Obligate necrophages and pollinivores have more specialized microbes, whereas facultative necrophages have a diversity of environmental microbes associated with several dietary niches. Our study suggests that necrophagous bee microbiomes may have evolved to overcome cellular stress and microbial competition associated with carrion. We hypothesize that the microbiome evolved social phenotypes, such as biofilms, that protect the bees from opportunistic pathogens present on carcasses, allowing them to overcome novel nutritional challenges. Whether specific microbes enabled diet shifts or diet shifts occurred first and microbial evolution followed requires further research to disentangle. Nonetheless, we find that necrophagous microbiomes, vertebrate and invertebrate alike, have functional commonalities regardless of their taxonomy. 
    more » « less
  5. Abstract PremiseReproductive fitness in plants is often determined by the quantity and quality of pollen transferred by pollinators. However, many fitness studies measure only female fitness or rely on proxies for male fitness. Here we assessed how five bee taxon groups affect male fitness in a prairie plant by quantifying pollen removal, visitation, and siring success using paternity assignments and a unique pollinator visitation experiment. MethodsInEchinacea angustifolia, we measured per‐visit pollen removal for each pollinator taxon and estimated the number of pollen grains needed for successful ovule fertilization. Additionally, we directly measured pollinator influence on siring by allowing only one bee taxon to visit each pollen‐donor plant, while open‐pollinated plants acted as unrestricted pollen recipients. We genotyped the resulting offspring, assigned paternity, and used aster statistical models to quantify siring success. ResultsSiring success of pollen‐donor plants differed among the five pollinator groups. Nongrooming male bees were associated with increased siring success. Bees from all taxa removed most of the flowering head's pollen in one visit. However, coneflower‐specialist beeAndrena helianthiformisremoved the most pollen per visit. Female fitness and proxy measures of male fitness, such as pollinator visitation and pollen removal, did not align with our direct quantifications of male fitness. ConclusionsOur results illustrate the need for more studies to directly quantify male fitness, and we caution against using male fitness proxy measures. In addition, conservation efforts that preserve a diverse pollinator community can benefit plants in fragmented landscapes. 
    more » « less