skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Crystal structures, phase transition, and Hirshfeld surface analyses of the bromide and chloride congeners of aqua[2,4,6-tris(pyridin-4-yl)-1,3,5-triazine]zinc(II) halide
During the course of exploring crystallization conditions in generating metal–organic frameworks (MOFs) for use in the crystalline sponge method, two discrete metal–organic complexes, namely, aqua[2,4,6-tris(pyridin-4-yl)-1,3,5-triazine]zinc(II) bromide, [Zn(C18H12N6)(H2O)]Br2, and aqua[2,4,6-tris(pyridin-4-yl)-1,3,5-triazine]zinc(II) chloride, [Zn(C18H12N6)(H2O)]Cl2, were encountered. Structures in the orthorhombic space groupPnma(No. 62) for the bromide congener at 299 K and the chloride congener at 100 K were obtained. A phase transition for the bromide congener occurred upon cooling from 299 to 100 K, yielding a crystal polymorph with four domains that exhibits monoclinicP21/mspace-group symmetry (No. 11), which arises from conformational changes. The main intramolecular contacts that contribute to the crystal packing in all observed structures are H...H, Halide...H/H...Halide, C...H/H...C, and N...H/H...N. Intramolecular hydrogen bonding between the Zn-bound water and non-Zn-bound pyridyl N atoms is a prominent feature within the three-dimensional networks. Aromatic π-stacking between the non-Zn-bound pyridine rings and contacts involving the halide ligands further stabilize the crystal packing.  more » « less
Award ID(s):
2117502
PAR ID:
10560856
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Union of Crystallography
Date Published:
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
80
Issue:
9
ISSN:
2053-2296
Page Range / eLocation ID:
545 to 552
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer. 
    more » « less
  2. null (Ed.)
    The title compound, [Cu 2 (C 19 H 23 N 7 O)(C 2 H 3 O 2 ) 4 ] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy- N 2 , N 4 -bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P 2 1 / c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c -glide of the P 2 1 / c setting of the space group. The resulting chains running along the c -axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure. 
    more » « less
  3. 2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate–3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S, (IV). All four salts exhibit robust homomeric and heteromericR22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen–π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N—H...O and N—H...N hydrogen bonds with multiple furcated donors and acceptors. 
    more » « less
  4. null (Ed.)
    The molecular structure of trans -bis(pyridin-3-yl)ethylene ( 3,3′-bpe ), C 12 H 10 N 2 , as determined by single-crystal X-ray diffraction is reported. The molecule self-assembles into two dimensional arrays by a combination of C—H...N hydrogen bonds and edge-to-face C—H... π interactions that stack in a herringbone arrangement perpendicular to the crystallographic c -axis. The supramolecular forces that direct the packing of 3,3′-bpe as well as its packing assembly within the crystal are also compared to those observed within the structures of the other symmetrical isomers trans -1,2-bis( n -pyridyl)ethylene ( n , n ′-bpe , where n = n ′ = 2 or 4). 
    more » « less
  5. Structural characteristics are reported for two thioether–ketones,DtdpeandMtdp[2-({2-[(2-oxo-2-phenylethyl)sulfanyl]ethyl}sulfanyl)-1-phenylethan-1-one, C18H18O2S2, and 2-[(2-oxo-2-phenylethyl)sulfanyl]-1-phenylethan-1-one, C16H14O2S], and for related derivatives, the bis(pyridylhydrazones)DhpkandPrpsb[2-((2E)-2-{(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-ylidene]ethylidene}hydrazin-1-yl)pyridine, C18H16N6, and 2-[(2Z,12Z)-3,12-diphenyl-14-(pyridin-2-yl)-5,10-dithia-1,2,13,14-tetraazatetradeca-2,12-dien-1-yl]pyridine, C30H32N6S2], as well as for the macrocyclic thiocarbohydrazide derivativeCtrsp[(3E,8Z)-3,9-dimethyl-1,11-dithia-4,5,7,8-tetraazacyclotetradeca-3,8-diene-6-thione, C10H18N4S3]. Three of the five compounds exhibit conformational enantiomerism in the solid state. The occurrence of intra- and intermolecular hydrogen bonding is commented upon through quantum mechanical (DFT) calculations. Weak C—H...S interactions are noted, while stronger N—H...N and N—H...S hydrogen bridges are delineated. 
    more » « less