The structure of the title compound, [CdCl2(C15H16N4S)], at 100 K has monoclinic (P21/c) symmetry. The compound has a layer structure and is a 1:1 complex of the organic ligand and cadmium chloride. The ligand, 3,3-dimethyl-1-[(E)-[phenyl(pyridine-2-yl)methylidene]amino]thiourea (L, Bp44mT), is of interest with respect to anticancer activity, antiviral properties and potential use in conditions of iron overload, from hemochromatosis or from multiple transfusions in hematological disorders such as sickle cell disease or beta thalassemia. This study is aimed at uncovering the basis of selectivity of the ligand as a chelator and for lead optimization. We also examine the ligand's potential use in treating heavy metal poisoning from cadmium, arsenic, lead or mercury, and for environmental remediation. The crystal structure exhibits no intermolecular or intramolecular hydrogen bonding with the supramolecular features being driven by hydrophobic, π–π and long-range dispersion forces.
more »
« less
This content will become publicly available on July 1, 2026
Syntheses and structures of dinuclear zinc(II) acetate-bridged coordination compounds with the aromatic Schiff base chelators N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamide and N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamide
In the centrosymmetric title complexes, di-μ-acetato-bis({N,N-dimethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C15H15N4S)2(C2H3O2)2] (I), and di-μ-acetato-bis({N-ethyl-2-[phenyl(pyridin-2-yl)methylidene]hydrazine-1-carbothioamidato}zinc(II)), [Zn2(C16H17N4S)2(C2H3O2)2] (II), the zinc ions are chelated by theN,N,S-tridentate ligands and bridged by pairs of acetate ions. The acetate ion in (I) is disordered over two orientations in a 0.756 (6):0.244 (6) ratio, leading to different zinc coordination modes for the major (5-coordinate) and minor (6-coordinate) disorder components. Geometrical indices [τ5= 0.32 and 0.30 for (I) (major component) and (II), respectively] suggest the zinc coordination in these phases to be distorted square pyramidal. This study forms part of our aim to discern the mechanism of metal binding in these chelators, their specificity and selectivity, and to gain insight into the role of cellular zinc in physiological processes such as infection, immunity and cancer.
more »
« less
- Award ID(s):
- 2117502
- PAR ID:
- 10656166
- Publisher / Repository:
- International Union of Crystallography
- Date Published:
- Journal Name:
- Acta Crystallographica Section E Crystallographic Communications
- Volume:
- 81
- Issue:
- 7
- ISSN:
- 2056-9890
- Page Range / eLocation ID:
- 636 to 641
- Subject(s) / Keyword(s):
- crystal structure mobile zinc lipophilicity mixed donor set coordination chemistry cell biology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During the course of exploring crystallization conditions in generating metal–organic frameworks (MOFs) for use in the crystalline sponge method, two discrete metal–organic complexes, namely, aqua[2,4,6-tris(pyridin-4-yl)-1,3,5-triazine]zinc(II) bromide, [Zn(C18H12N6)(H2O)]Br2, and aqua[2,4,6-tris(pyridin-4-yl)-1,3,5-triazine]zinc(II) chloride, [Zn(C18H12N6)(H2O)]Cl2, were encountered. Structures in the orthorhombic space groupPnma(No. 62) for the bromide congener at 299 K and the chloride congener at 100 K were obtained. A phase transition for the bromide congener occurred upon cooling from 299 to 100 K, yielding a crystal polymorph with four domains that exhibits monoclinicP21/mspace-group symmetry (No. 11), which arises from conformational changes. The main intramolecular contacts that contribute to the crystal packing in all observed structures are H...H, Halide...H/H...Halide, C...H/H...C, and N...H/H...N. Intramolecular hydrogen bonding between the Zn-bound water and non-Zn-bound pyridyl N atoms is a prominent feature within the three-dimensional networks. Aromatic π-stacking between the non-Zn-bound pyridine rings and contacts involving the halide ligands further stabilize the crystal packing.more » « less
-
The tetramer of bis(4-di- n -butylaminophenyl)(pyridin-3-yl)borane [systematic name: 2λ 4 ,4λ 4 ,6λ 4 ,8λ 4 -tetrabora-1,3,5,7(1,3)-tetrapyridinacyclooctaphane-1 1 ,3 1 ,5 1 ,7 1 -tetrakis(ylium)], C 132 H 192 B 4 N 12 , was synthesized unexpectedly and crystallized. Its structure contains an unusual 16-membered ring core made up of four (pyridin-3-yl)borane groups. The ring adopts a conformation with pseudo- S 4 symmetry that is very different from the two other reported examples of this ring system. Density functional theory (DFT) computations indicate that the stability of the three reported ring conformations is dependent on the substituents on the B atoms, and that the pseudo- S 4 geometry observed in the bis(4-dibutylaminophenyl)(pyridin-3-yl)borane tetramer becomes significantly more stable when phenyl or 2,6-dimethylphenyl groups are attached to the boron centers.more » « less
-
null (Ed.)The title compound, [Cu 2 (C 19 H 23 N 7 O)(C 2 H 3 O 2 ) 4 ] n , was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy- N 2 , N 4 -bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P 2 1 / c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c -glide of the P 2 1 / c setting of the space group. The resulting chains running along the c -axis direction are held together by intramolecular N—H...O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.more » « less
-
Structural characteristics are reported for two thioether–ketones,DtdpeandMtdp[2-({2-[(2-oxo-2-phenylethyl)sulfanyl]ethyl}sulfanyl)-1-phenylethan-1-one, C18H18O2S2, and 2-[(2-oxo-2-phenylethyl)sulfanyl]-1-phenylethan-1-one, C16H14O2S], and for related derivatives, the bis(pyridylhydrazones)DhpkandPrpsb[2-((2E)-2-{(2Z)-2-phenyl-2-[2-(pyridin-2-yl)hydrazin-1-ylidene]ethylidene}hydrazin-1-yl)pyridine, C18H16N6, and 2-[(2Z,12Z)-3,12-diphenyl-14-(pyridin-2-yl)-5,10-dithia-1,2,13,14-tetraazatetradeca-2,12-dien-1-yl]pyridine, C30H32N6S2], as well as for the macrocyclic thiocarbohydrazide derivativeCtrsp[(3E,8Z)-3,9-dimethyl-1,11-dithia-4,5,7,8-tetraazacyclotetradeca-3,8-diene-6-thione, C10H18N4S3]. Three of the five compounds exhibit conformational enantiomerism in the solid state. The occurrence of intra- and intermolecular hydrogen bonding is commented upon through quantum mechanical (DFT) calculations. Weak C—H...S interactions are noted, while stronger N—H...N and N—H...S hydrogen bridges are delineated.more » « less
An official website of the United States government
