Undergraduate students in upper levels of physics or engineering programs learn the theory of Fourier series and integral transform method from mathematics courses. Nevertheless, they rarely see the application of such a method to solving problems in calculus-based physics courses that deal with topics such as electrostatics or magnetism. In this work, we illustrate the utility of the Fourier transform method by considering and solving via such a technique a representative problem that arises in electrostatics. The chosen case study is that of a spherical surface with uniform surface charge density and the calculation of its electrostatic Coulomb self-energy. By solving this problem by using the Fourier transform technique we also draw attention to the pedagogical aspects of the treatment. In particular, we stress the point that the Fourier transform method should be treated at more depth in calculus-based physics courses for undergraduate students.
more »
« less
Electrostatic potential of a uniformly charged annulus
Abstract The calculation of the electrostatic potential and/or electrostatic field due to a continuous distribution of charge is a well-covered topic in all calculus-based undergraduate physics courses. The most common approach is to consider bodies with uniform charge distribution and obtain the quantity of interest by integrating over the contributions from all the differential charges. The examples of a uniformly charged disk and ring are prominent in many physics textbooks since they illustrate well this technique at least for special points or directions of symmetry where the calculations are relatively simple. Surprisingly, the case of a uniformly charged annulus, namely, an annular disk, is largely absent from the literature. One might speculate that a uniformly charged annulus is not extremely interesting since after all, it is a uniformly charged disk with a central circular hole. However, we show in this work that the electrostatic potential created by a uniformly charged annulus has features that are much more interesting than one might have expected. A uniformly charged annulus interpolates between a uniformly charged disk and ring. However, the results of this work suggest that a uniformly charged annulus has such electrostatic features that may be essentially viewed as ring-like. The ring-like characteristics of the electrostatic potential of a uniformly charged annulus are evident as soon as a hole is present no matter how small the hole might be. The solution of this problem allows us to draw attention to the pedagogical aspects of this overlooked, but very interesting case study in electrostatics. In our opinion, the problem of a uniformly charged annulus and its electrostatic properties deserves to be treated at more depth in all calculus-based undergraduate physics courses covering electricity and magnetism.
more »
« less
- Award ID(s):
- 2001980
- PAR ID:
- 10560895
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- European Journal of Physics
- Volume:
- 45
- Issue:
- 3
- ISSN:
- 0143-0807
- Page Range / eLocation ID:
- 035201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study a structure consisting of two electrostatically interacting objects, a uniformly charged square nanoplate and a uniformly charged nanowire. A straightforward motivation behind this work is to introduce a model that allows a classical description of a finite two-dimensional quantum Hall system of few electrons when the Landau gauge is imposed. In this scenario, the uniformly charged square nanoplate would stand for the neutralizing background of the system while a uniformly charged nanowire would represent the resulting quantum striped state of the electrons. A second important feature of this model is that it also applies to hybrid charged nanoplate-nanowire systems in which the dominant interaction has electrostatic origin. An exact analytical expression for the electrostatic interaction potential between the uniformly charged square nanoplate and coplanar nanowire is obtained by using a special mathematical method adept for this geometry. It is found that the resulting interaction potential is finite, monotonic and slowly-varying for all locations of the nanowire inside the nanoplate.more » « less
-
The molecular features that dictate interactions between functionalized nanoparticles and biomolecules are not well understood. This is in part because for highly charged nanoparticles in solution, establishing a clear connection between the molecular features of surface ligands and common experimental observables such as ζ potential requires going beyond the classical models based on continuum and mean field models. Motivated by these considerations, molecular dynamics simulations are used to probe the electrostatic properties of functionalized gold nanoparticles and their interaction with a charged peptide in salt solutions. Counterions are observed to screen the bare ligand charge to a significant degree even at the moderate salt concentration of 50 mM. As a result, the apparent charge density and ζ potential are largely insensitive to the bare ligand charge densities, which fall in the range of ligand densities typically measured experimentally for gold nanoparticles. While this screening effect was predicted by classical models such as the Manning condensation theory, the magnitudes of the apparent surface charge from microscopic simulations and mean-field models are significantly different. Moreover, our simulations found that the chemical features of the surface ligand ( e.g. , primary vs. quaternary amines, heterogeneous ligand lengths) modulate the interfacial ion and water distributions and therefore the interfacial potential. The importance of interfacial water is further highlighted by the observation that introducing a fraction of hydrophobic ligands enhances the strength of electrostatic binding of the charged peptide. Finally, the simulations highlight that the electric double layer is perturbed upon binding interactions. As a result, it is the bare charge density rather than the apparent charge density or ζ potential that better correlates with binding affinity of the nanoparticle to a charged peptide. Overall, our study highlights the importance of molecular features of the nanoparticle/water interface and underscores a set of design rules for the modulation of electrostatic driven interactions at nano/bio interfaces.more » « less
-
We explain a general mathematical method that allows one to calculate the electrostatic potential created by a uniformly charged rectangular plate with arbitrary length and width at an arbitrary point in space. Exact analytical results for the electrostatic potential due to a uniformly charged finite rectangular plate are shown for special cases in order to illustrate the implementation of the formalism. Results of this nature are very important to various problems in physical sciences, applied mathematics, and potential theory.more » « less
-
A bstract We discuss aspects of the possible transition between small black holes and highly excited fundamental strings. We focus on the connection between black holes and the self gravitating string solution of Horowitz and Polchinski. This solution is interesting because it has non-zero entropy at the classical level and it is natural to suspect that it might be continuously connected to the black hole. Surprisingly, we find a different behavior for heterotic and type II cases. For the type II case we find an obstruction to the idea that the two are connected as classical solutions of string theory, while no such obstruction exists for the heterotic case. We further provide a linear sigma model analysis that suggests a continuous connection for the heterotic case. We also describe a solution generating transformation that produces a charged version of the self gravitating string. This provides a fuzzball-like construction of near extremal configurations carrying fundamental string momentum and winding charges. We provide formulas which are exact in α ′ relating the thermodynamic properties of the charged and the uncharged solutions.more » « less
An official website of the United States government

