We consider a risk-averse stochastic capacity planning problem under uncertain demand in each period. Using a scenario tree representation of the uncertainty, we formulate a multistage stochastic integer program to adjust the capacity expansion plan dynamically as more information on the uncertainty is revealed. Specifically, in each stage, a decision maker optimizes capacity acquisition and resource allocation to minimize certain risk measures of maintenance and operational cost. We compare it with a two-stage approach that determines the capacity acquisition for all the periods up front. Using expected conditional risk measures, we derive a tight lower bound and an upper bound for the gaps between the optimal objective values of risk-averse multistage models and their two-stage counterparts. Based on these derived bounds, we present general guidelines on when to solve risk-averse two-stage or multistage models. Furthermore, we propose approximation algorithms to solve the two models more efficiently, which are asymptotically optimal under an expanding market assumption. We conduct numerical studies using randomly generated and real-world instances with diverse sizes, to demonstrate the tightness of the analytical bounds and efficacy of the approximation algorithms. We find that the gaps between risk-averse multistage and two-stage models increase as the variability of the uncertain parameters increases and decrease as the decision maker becomes more risk averse. Moreover, a stagewise-dependent scenario tree attains much higher gaps than a stagewise-independent counterpart, whereas the latter produces tighter analytical bounds. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work of Dr. X. Yu was partially supported by the U.S. National Science Foundation Division of Information and Intelligent Systems [Grant 2331782]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0396 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0396 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
more »
« less
This content will become publicly available on December 13, 2025
A Bilevel Optimization Approach for a Class of Combinatorial Problems with Disruptions and Probing
We consider linear combinatorial optimization problems under uncertain disruptions that increase the cost coefficients of the objective function. A decision maker, or planner, can invest resources to probe the components (i.e., the coefficients) in order to learn their disruption status. In the proposed probing optimization problem, the planner, knowing just the disruptions’ probabilities, selects which components to probe subject to a probing budget in a first decision stage. Then, the uncertainty realizes, and the planner observes the disruption status of the probed components, after which the planner solves the combinatorial problem in the second stage. In contrast to standard two-stage stochastic optimization, the planner does not have access to the full uncertainty realization in the second stage. Consequently, the planner cannot directly optimize the second-stage objective function, which is given by the actual cost after disruptions, and the decisions have to be made based on an estimate of the cost. By assuming that the estimate is given by the conditional expected cost given the information revealed by probing, we reformulate the probing optimization problem as a bilevel problem with multiple followers and propose an exact algorithm based on a value function reformulation and three heuristic algorithms. We derive theoretical results that bound the value of information and the price of not having full information and a bound on the required probing budget that attains the same performance as full information. Our extensive computational experiments suggest that probing a fraction of the components is sufficient to yield large improvements in the optimal value, that our exact algorithm is competitive for small- to medium-scale instances, and that the proposed heuristics find high-quality solutions in large-scale instances. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI 2145553]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0629 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0629 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
more »
« less
- Award ID(s):
- 2145553
- PAR ID:
- 10560981
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- INFORMS Journal on Computing
- ISSN:
- 1091-9856
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the nested simulation literature, a common assumption is that the experimenter can choose the number of outer scenarios to sample. This paper considers the case when the experimenter is given a fixed set of outer scenarios from an external entity. We propose a nested simulation experiment design that pools inner replications from one scenario to estimate another scenario’s conditional mean via the likelihood ratio method. Given the outer scenarios, we decide how many inner replications to run at each outer scenario as well as how to pool the inner replications by solving a bilevel optimization problem that minimizes the total simulation effort. We provide asymptotic analyses on the convergence rates of the performance measure estimators computed from the optimized experiment design. Under some assumptions, the optimized design achieves [Formula: see text] mean squared error of the estimators given simulation budget [Formula: see text]. Numerical experiments demonstrate that our design outperforms a state-of-the-art design that pools replications via regression. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [Grant CMMI-2045400] and the Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2018-03755]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0392 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0392 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
The quantum approximate optimization algorithm (QAOA) has enjoyed increasing attention in noisy, intermediate-scale quantum computing with its application to combinatorial optimization problems. QAOA has the potential to demonstrate a quantum advantage for NP-hard combinatorial optimization problems. As a hybrid quantum-classical algorithm, the classical component of QAOA resembles a simulation optimization problem in which the simulation outcomes are attainable only through a quantum computer. The simulation that derives from QAOA exhibits two unique features that can have a substantial impact on the optimization process: (i) the variance of the stochastic objective values typically decreases in proportion to the optimality gap, and (ii) querying samples from a quantum computer introduces an additional latency overhead. In this paper, we introduce a novel stochastic trust-region method derived from a derivative-free, adaptive sampling trust-region optimization method intended to efficiently solve the classical optimization problem in QAOA by explicitly taking into account the two mentioned characteristics. The key idea behind the proposed algorithm involves constructing two separate local models in each iteration: a model of the objective function and a model of the variance of the objective function. Exploiting the variance model allows us to restrict the number of communications with the quantum computer and also helps navigate the nonconvex objective landscapes typical in QAOA optimization problems. We numerically demonstrate the superiority of our proposed algorithm using the SimOpt library and Qiskit when we consider a metric of computational burden that explicitly accounts for communication costs. History: Accepted by Giacomo Nannicini, Area Editor for Quantum Computing and Operations Research. Accepted for Special Issue. Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers and the Office of Advanced Scientific Computing Research, Accelerated Research for Quantum Computing program under contract number DE-AC02-06CH11357. Y. Ha and S. Shashaani also gratefully acknowledge the U.S. National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation Grant CMMI-2226347 and the U.S. Office of Naval Research [Grant N000142412398]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0575 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0575 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
This paper reconsiders the On-Demand Multimodal Transit Systems (ODMTS) Design with Adoptions problem (ODMTS-DA) to capture the latent demand in on-demand multimodal transit systems. The ODMTS-DA is a bilevel optimization problem, for which Basciftci and Van Hentenryck proposed an exact combinatorial Benders decomposition. Unfortunately, their proposed algorithm only finds high-quality solutions for medium-sized cities and is not practical for large metropolitan areas. The main contribution of this paper is to propose a new path-based optimization model, called P-Path, to address these computational difficulties. The key idea underlying P-Path is to enumerate two specific sets of paths which capture the essence of the choice model associated with the adoption behavior of riders. With the help of these path sets, the ODMTS-DA can be formulated as a single-level mixed-integer programming model. In addition, the paper presents preprocessing techniques that can reduce the size of the model significantly. P-Path is evaluated on two comprehensive case studies: the midsize transit system of the Ann Arbor – Ypsilanti region in Michigan (which was studied by Basciftci and Van Hentenryck) and the large-scale transit system for the city of Atlanta. The experimental results show that P-Path solves the Michigan ODMTS-DA instances in a few minutes, bringing more than two orders of magnitude improvements compared with the existing approach. For Atlanta, the results show that P-Path can solve large-scale ODMTS-DA instances (about 17 millions variables and 37 millions constraints) optimally in a few hours or in a few days. These results show the tremendous computational benefits of P-Path which provides a scalable approach to the design of on-demand multimodal transit systems with latent demand. History: Accepted by Andrea Lodi, Design & Analysis of Algorithms—Discrete. Funding: This work was partially supported by National Science Foundation Leap-HI [Grant 1854684] and the Tier 1 University Transportation Center (UTC): Transit - Serving Communities Optimally, Responsively, and Efficiently (T-SCORE) from the U.S. Department of Transportation [69A3552047141]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0014 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0014 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
In modeling battery energy storage systems (BESS) in power systems, binary variables are used to represent the complementary nature of charging and discharging. A conventional approach for these BESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized mixed-integer programming (MIP) model for the optimal power flow (OPF) problem with BESS. We prove that, under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near optimal to the original OPF problem with BESS, thereby providing a valid and tight upper bound for the OPF problem with BESS. The use of the regularized MIP model allows us to solve a trilevel [Formula: see text]-[Formula: see text]-[Formula: see text] network contingency problem, which is otherwise intractable to solve. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: N. Jiang (as a graduate student at the Georgia Institute of Technology) and W. Xie were supported in part by the National Science Foundation [Grant 2246414] and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0771 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0771 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
An official website of the United States government
