Abstract Complex graphene electrode fabrication protocols including conventional chemical vapor deposition and graphene transfer techniques as well as more recent solution‐phase printing and postprint annealing methods have hindered the wide‐scale implementation of electrochemical devices including solid‐state ion‐selective electrodes (ISEs). Herein, a facile graphene ISE fabrication technique that utilizes laser induced graphene (LIG), formed by converting polyimide into graphene by a CO2laser and functionalization with ammonium ion (NH4+) and potassium ion (K+) ion‐selective membranes, is demonstrated. The electrochemical LIG ISEs exhibit a wide sensing range (0.1 × 10−3–150 × 10−3mfor NH4+and 0.3 × 10−3–150 × 10−3mfor K+) with high stability (minimal drop in signal after 3 months of storage) across a wide pH range (3.5–9.0). The LIG ISEs are also able to monitor the concentrations of NH4+and K+in urine samples (29–51% and 17–61% increase for the younger and older patient; respectively, after dehydration induction), which correlate well with conventional hydration status measurements. Hence, these results demonstrate a facile method to perform in‐field ion sensing and are the first steps in creating a protocol for quantifying hydration levels through urine testing in human subjects.
more »
« less
A dip-and-read impedimetric electrochemical sensor for orthophosphate monitoring
Abstract Phosphorus (P) is an essential element for all life forms and a finite resource. P cycle plays a vital role in regulating primary productivity, making it a limiting nutrient for agricultural production and increasing the development of fertilizers through extractive mining. However, excessive P may cause detrimental environmental effects on aquatic and agricultural ecosystems. As a result, there is a pressing need for conservation and management of P loads through analytical techniques to measure P and precisely determine P speciation. Here, we explore a new 2D sorbent structure (GO-PDDA) for sensing orthophosphate in aqueous samples. The sorbent mimics a group of phosphate-binding proteins in nature and is expected to bind orthophosphate in solution. Laser-induced graphene (LIG) was coated with GO-PDDA using a drop-cast method. Electrochemical impedance spectroscopy was used as a transduction technique for electrochemical sensing of orthophosphate (HPO42−) and selectivity assay for chloride, sulfate and nitrate in buffer at pH 8. The analytical sensitivity was estimated to be 347 ± 90.2 Ω/ppm with a limit of detection of 0.32 ± 0.04 ppm. Selectivity assays demonstrate that LIG-GO-PDDA is 95% more selective for ortho-P over sulfate and 80% more selective over chloride and nitrate. The developed sensor can be reused after surface regeneration with an acidic buffer (pH 5), with slight changes in sensor performance. Our results show that the sorbent structure is a promising candidate for developing electrochemical sensors for environmental monitoring of orthophosphate and may provide reliable data to support sustainable P management.
more »
« less
- Award ID(s):
- 1805315
- PAR ID:
- 10561074
- Publisher / Repository:
- Research Square
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Clemson University; Arizona State University; North Carolina State University.
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Agricultural intensification has increased the use of chemical fertilizers, promoting plant growth and crop yield. Excessive use of nitrogen fertilizers leads to nutrient loss and low nitrogen use efficiency. Management of nitrogen fertilizer input requires close to real‐time information about the soil nitrate concentration. While there is extensive work developing nitrate ion sensing solutions for liquid media, few allow for in‐soil measurements. This study introduces inkjet‐printed potentiometric sensors, containing 2 electrodes, the reference electrode (RE) and the nitrate‐selective film‐encapsulated working electrode (WE). The interaction between the nitrate‐sensitive membrane and soil nitrate ions causes a change in potential across the RE and WE. Additionally, a hydrophilic Polyvinylidene Fluoride (PVDF) layer ensures the long‐term functionality of the sensor in wet soil environments by protecting it from charged soil particles while simultaneously allowing water to flow from the soil toward the sensor electrodes. The sensors are tested in sand and silt loam soil, demonstrating their versatility across soil types. The potential change can be related to the nitrate concentration in soil, with typical sensitivities of 45–55 mV decade−1. Overall, the use of the PVDF layer allows for direct sensing in moist soil environments, which is critical for developing soil nitrate sensors.more » « less
-
Abstract The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NO x ) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NO x gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm −1 to NO and 6.66‰ ppm −1 to NO 2 , an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO 2 , fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NO x gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.more » « less
-
Measurements of the gas sensing performance of nanomaterials typically involve the use of interdigitated electrodes (IDEs). A separate heater is often integrated to provide elevated temperature for improved sensing performance. However, the use of IDEs and separate heaters increases fabrication complexity. Here, a novel gas sensing platform based on a highly porous laser-induced graphene (LIG) pattern is reported. The LIG gas sensing platform consists of a sensing region and a serpentine interconnect region. A thin film of metal ( e.g. , Ag) coated in the serpentine interconnect region significantly reduces its resistance, thereby providing a localized Joule healing in the sensing region ( i.e. , self-heating) during typical measurements of chemoresistive gas sensors. Dispersing nanomaterials with different selectivity in the sensing region results in an array to potentially deconvolute various gaseous components in the mixture. The self-heating of the LIG gas sensing platform is first studied as a function of the applied voltage during resistance measurement and LIG geometric parameters ( e.g. , linewidth from 120 to 240 μm) to achieve an operating temperature from 20 to 80 °C. Systematic investigations of various nanomaterials demonstrate the feasibility of the LIG gas sensing performance. Taken together with the stretchable design layout in the serpentine interconnect region to provide mechanical robustness over a tensile strain of 20%, the gas sensor with a significant response (6.6‰ ppm −1 ), fast response/recovery processes, excellent selectivity, and an ultralow limit of detection (1.5 parts per billion) at a modest temperature from self-heating opens new opportunities in epidermal electronic devices.more » « less
-
The electrochemical reduction of nitrate to ammonia is of interest as an energy/environmentally friendly source of ammonia for agriculture and energy applications and as a route toward groundwater purification. We report in situ photoemission data, electrochemical results, and density functional theory calculations that demonstrate vanadium oxide—prepared by ambient exposure of V metal, with a distribution of surface V3+and V4+oxidation states—specifically adsorbs and reduces nitrate to ammonia at pH 3.2 at cathodic potentials. Negligible cathodic activity in the absence of NO3−indicates high selectivity with respect to non-nitrate reduction processes. In situ photoemission data indicate that nitrate adsorption and reduction to adsorbed NO2is a key step in the reduction process. NO3RR activity is also observed at pH 7, albeit at a much slower rate. The results indicate that intermediate (non-d0) oxidation states are important for both molecular nitrogen and nitrate reduction to ammonia.more » « less
An official website of the United States government

