skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of Pop III stars’ chemical signature in neutral gas at z ∼ 6: A study based on the E-XQR-30 spectroscopic sample
Aims.This study explores the metal enrichment signatures attributed to the first generation of stars (Pop III) in the Universe, focusing on the E-XQR-30 sample – a collection of 42 high signal-to-noise ratio spectra of quasi-stellar objects (QSOs) with emission redshifts ranging from 5.8 to 6.6. We aim to identify traces of Pop III metal enrichment by analyzing neutral gas in the interstellar medium of primordial galaxies and their satellite clumps, detected in absorption. Methods.To chase the chemical signature of Pop III stars, we studied metal absorption systems in the E-XQR-30 sample, selected through the detection of the neutral oxygen absorption line at 1302 Å. The O Iline is a reliable tracer of neutral hydrogen and allowed us to overcome the challenges posed by the Lyman-αforest’s increasing saturation at redshifts above ∼5 to identify damped Lyman-αsystems (DLAs). We detected and analyzed 29 O Isystems atz ≥ 5.4, differentiating between proximate DLAs (PDLAs) and intervening DLAs. Voigt function fits were applied to obtain ionic column densities, and relative chemical abundances were determined for 28 systems. These were then compared with the predictions of theoretical models. Results.Our findings expand the study of O Isystems atz ≥ 5.4 fourfold. No systematic differences were observed in the average chemical abundances between PDLAs and intervening DLAs. The chemical abundances in our sample align with literature systems atz >  4.5, suggesting a similar enrichment pattern for this class of absorption systems. A comparison between these DLA-analogs at 4.5 <  z <  6.5 with a sample of very metal-poor DLAs at 2 <  z <  4.5 shows in general similar average values for the relative abundances, with the exception of [C/O], [Si/Fe] and [Si/O] which are significantly larger for the high-zsample. Furthermore, the dispersion of the measurements significantly increases in the high-redshift bin. This increase is predicted by the theoretical models and indicates a potential retention of Pop III signatures in the probed gas. Conclusions.This work represents a significant advancement in the study of the chemical properties of highly neutral gas atz ≥ 5.4, shedding light on its potential association with the metal enrichment from Pop III stars. Future advancements in observational capabilities, specifically high-resolution spectrographs, are crucial for refining measurements and addressing current limitations in the study of these distant absorption systems.  more » « less
Award ID(s):
1751404
PAR ID:
10561104
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
687
ISSN:
0004-6361
Page Range / eLocation ID:
A314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Abundances of chemical elements in the interstellar and circumgalactic media of high-redshift galaxies offer important constraints on the nucleosynthesis by early generations of stars. Damped Lyαabsorbers (DLAs) in spectra of high-redshift background quasars are excellent sites for obtaining robust measurements of element abundances in distant galaxies. Past studies of DLAs at redshiftsz> 4 have measured abundances of ≲0.01 solar. Here we report the discovery of a DLA atz= 4.7372 with an exceptionally high degree of chemical enrichment. We estimate the Hicolumn density in this absorber to be log (NH I/cm−2) = 20.48 ± 0.15. Our analysis shows unusually high abundances of carbon and oxygen ([C/H] = 0.88 ± 0.17, [O/H] = 0.71 ± 0.16). Such a high level of enrichment a mere 1.2 Gyr after the Big Bang is surprising because of insufficient time for the required amount of star formation. To our knowledge, this is the first supersolar absorber found atz> 4.5. We find the abundances of Si and Mg to be [Si/H] = 0.56 0.35 + 0.40 and [Mg/H] = 0.59 0.50 + 0.27 , confirming the metal-rich nature of this absorber. By contrast, Fe shows a much lower abundance ([Fe/H] = 1.53 0.15 + 0.15 ). We discuss implications of our results for galactic chemical evolution models. The metallicity of this absorber is higher than that of any other known DLA and is >2 orders of magnitude above predictions of chemical evolution models and theNH I-weighted mean metallicity from previous studies atz> 4.5. The relative abundances (e.g., [O/Fe] = 2.29 ± 0.05, [C/Fe] = 2.46 ± 0.08) are also highly unusual compared to predictions for enrichment by early stars. 
    more » « less
  2. Abstract Unveiling the chemical fingerprints of the first (Population III, hereafter Pop III) stars is crucial for indirectly studying their properties and probing their massive nature. In particular, very massive Pop III stars explode as energetic pair-instability supernovae (PISNe), allowing their chemical products to escape in the diffuse medium around galaxies, opening the possibility to observe their fingerprints in distant gas clouds. Recently, threez> 6.3 absorbers with abundances consistent with an enrichment from PISNe have been observed with JWST. In this Letter, we present novel chemical diagnostics to uncover environments mainly imprinted by PISNe. Furthermore, we revise the JWST low-resolution measurements by analyzing the publicly available high-resolution X-Shooter spectra for two of these systems. Our results reconcile the chemical abundances of these absorbers with those from literature, which are found to be consistent with an enrichment dominated (>50% metals) by normal Pop II SNe. We show the power of our novel diagnostics in isolating environments uniquely enriched by PISNe from those mainly polluted by other Pop III and Pop II SNe. When the subsequent enrichment from Pop II SNe is included, however, we find that the abundances of PISN-dominated environments partially overlap with those predominantly enriched by other Pop III and Pop II SNe. We dub these areas confusion regions. Yet, the odd–even abundance ratios [Mg,Si/Al] are extremely effective in pinpointing PISN-dominated environments and allowed us to uncover, for the first time, an absorber consistent with a combined enrichment by a PISN and another Pop III SN for all the six measured elements. 
    more » « less
  3. ABSTRACT Intervening metal absorbers in quasar spectra at z > 6 can be used as probes to study the chemical enrichment of the Universe during the Epoch of Reionization. This work presents the comoving line densities (dn/dX) of low-ionization absorbers, namely, Mg ii (2796 Å), C ii (1334 Å), and O  i (1302 Å) across 2 < z < 6 using the E-XQR-30 metal absorber catalogue prepared from 42 XSHOOTER quasar spectra at 5.8 < z < 6.6. Here, we analyse 280 Mg ii (1.9 < z < 6.4), 22 C ii (5.2 < z < 6.4), and 10 O i (5.3 < z < 6.4) intervening absorbers, thereby building up on previous studies with improved sensitivity of 50 per cent completeness at an equivalent width of W > 0.03 Å. For the first time, we present the comoving line densities of 131 weak (W < 0.3 Å) intervening Mg ii absorbers at 1.9 < z < 6.4 which exhibit constant evolution with redshift similar to medium (0.3 < W < 1.0 Å) absorbers. However, the cosmic mass density of Mg ii – dominated by strong Mg ii systems – traces the evolution of global star formation history from redshift 1.9 to 5.5. E-XQR-30 also increases the absorption path-length by a factor of 50 per cent for C ii and O i whose line densities show a rising trend towards z > 5, in agreement with previous works. In the context of a decline in the metal enrichment of the Universe at z > 5, the overall evolution in the incidence rates of absorption systems can be explained by a weak – possibly soft fluctuating – ultraviolet background. Our results, thereby, provide evidence for a late reionization continuing to occur in metal-enriched and therefore, biased regions in the Universe. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $$\langle T \rangle =(2\pm 1) \times 10^4\,$$K and modest non-thermal broadening of $$\langle b_\mathrm{nt} \rangle =5\pm 3\,$$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $$160^{+140}_{-50}$$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $$N\mathrm{(H\, {\small I})}$$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $$\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  5. Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 and C f ( N Si II ) = 0.75 0.17 + 0.12 ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range 2.06 log Z / Z 0.75 ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M
    more » « less