Abstract The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light‐dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half‐lives of 3–4 years show the importance of seasonal mixing processes in explaining north‐south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half‐lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin.
more »
« less
More Than Deoxygenation: Linking Iodate Reduction to Nitrogen, Iron, and Sulfur Chemistry in Reducing Regimes
Abstract A striking feature of Oxygen Deficient Zones (ODZs) on the eastern boundary of the Pacific Ocean are large subsurface plumes of iodide. Throughout the oceans, iodate is the predominant and thermodynamically favored species of dissolved iodine, but iodate is depleted within these plumes. The origin of iodide plumes and mechanism of reduction of iodate to iodide remains unclear but is thought to arise from a combination of in situ reduction and inputs from reducing shelf sediments. To distinguish between these sources, we investigated iodine redox speciation along the Oregon continental shelf. This upwelling system resembles ODZs but exhibits episodic hypoxia, rather than a persistently denitrifying water column. We observed elevated iodide in the benthic boundary layer overlying shelf sediments, but to a much smaller extent than within ODZs. There was no evidence of offshore plumes of iodide or increases in total dissolved iodine. Results suggest that an anaerobic water column dominated by denitrification, such as in ODZs, is required for iodate reduction. However, re‐analysis of iodine redox data from previous ODZ work suggests that most iodate reduction occurs in sediments, not the water column, and is also decoupled from denitrification. The underlying differences between these regimes have yet to be resolved, but could indicate a role for reduced sulfur in iodate reduction if the sulfate reduction zone is closer to the sediment‐water interface in ODZ shelf sediments than in Oregon sediments. Iodate reduction is not a simple function of oxygen depletion, which has important implications for its application as a paleoredox tracer.
more »
« less
- Award ID(s):
- 1923218
- PAR ID:
- 10561124
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 129
- Issue:
- 11
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. Iodine (I) abundance in marine carbonates (measured as an elemental ratio with calcium, I / Ca) is of broad interest as a proxy for local/regional ocean redox. This connection arises because the speciation of iodine in seawater, the balance between iodate (IO3-) and iodide (I−), is sensitive to the prevalence of oxic vs. anoxic conditions. However, although I / Ca ratios are increasingly commonly being measured in ancient carbonate samples, a fully quantitative interpretation of this proxy requires the availability of a mechanistic interpretative framework for the marine iodine cycle that can account for the extent and intensity of ocean deoxygenation in the past. Here we present and evaluate a representation of marine iodine cycling embedded in an Earth system model (“cGENIE”) against both modern and paleo-observations. In this framework, we account for IO3- uptake and release of I− through the biological pump, the reduction in ambient IO3- to I− in the water column, and the re-oxidation of I− to IO3-. We develop and test a variety of different plausible mechanisms for iodine reduction and oxidation transformation and contrast model projections against an updated compilation of observed dissolved IO3- and I− concentrations in the present-day ocean. By optimizing the parameters controlling previously proposed mechanisms involved in marine iodine cycling, we find that we can obtain broad matches to observed iodine speciation gradients in zonal surface distribution, depth profiles, and oxygen-deficient zones (ODZs). However, we also identify alternative, equally well performing mechanisms which assume a more explicit mechanistic link between iodine transformation and environment – an ambiguity that highlights the need for more process-based studies on modern marine iodine cycling. Finally, to help distinguish between competing representations of the marine iodine cycle and because our ultimate motivation is to further our ability to reconstruct ocean oxygenation in the geological past, we conducted “plausibility tests” of different model schemes against available I / Ca measurements made on Cretaceous carbonates – a time of substantially depleted ocean oxygen availability compared to modern and hence a strong test of our model. Overall, the simultaneous broad match we can achieve between modeled iodine speciation and modern observations, and between forward proxy modeled I / Ca and geological elemental ratios, supports the application of our Earth system modeling in simulating the marine iodine cycle to help interpret and constrain the redox evolution of past oceans.more » « less
-
David Hambright (Ed.)Abstract Widespread hypoxia occurs seasonally across the Oregon continental shelf, and the duration, intensity, and frequency of hypoxic events have increased in recent years. In hypoxic regions, iron reduction can liberate dissolved Fe(II) from continental shelf sediments. Fe(II) was measured in the water column across the continental shelf and slope on the Oregon coast during summer 2022 using both a trace metal clean rosette and a high‐resolution benthic gradient sampler. In the summer, Fe(II) concentrations were exceptionally high (40–60 nM) within bottom waters and ubiquitous across the Oregon shelf, reflecting the low oxygen condition (40–70 μM) at that time. The observed inverse correlation between Fe(II) and bottom water oxygen concentrations is in agreement with expectations based on previous work that demonstrates oxygen is a major determinant of benthic Fe fluxes. Rapid attenuation of Fe(II) from the benthic boundary layer (within 1 m of the seafloor) probably reflects efficient cross‐shelf advection. One region, centered around Heceta Bank (~ 44°N) acts a hotspot for Fe release on the Oregon continental shelf, likely due to its semi‐retentive nature and high percent mud content in sediment. The results suggest that hypoxia is an important determinant of the inventory of iron is Oregon shelf waters and thus ultimately controls the importance of continental margin‐derived iron to the interior of the North Pacific Basin.more » « less
-
Iodine intersects with the marine biogeochemical cycles of several major elements and can influence air quality through reactions with tropospheric ozone. Iodine is also an element of interest in paleoclimatology, whereby iodine-to-calcium ratios in marine carbonates are widely used as a proxy for past ocean redox state. While inorganic iodine in seawater is found predominantly in its reduced and oxidized anionic forms, iodide (I−) and iodate (IO3−), the rates, mechanisms and intermediate species by which iodine cycles between these inorganic pools are poorly understood. Here, we address these issues by characterizing the speciation, composition and cycling of iodine in the upper 1,000 m of the water column at Station ALOHA in the subtropical North Pacific Ocean. We first obtained high-precision profiles of iodine speciation using isotope dilution and anion exchange chromatography, with measurements performed using inductively coupled plasma mass spectrometry (ICP-MS). These profiles indicate an apparent iodine deficit in surface waters approaching 8% of the predicted total, which we ascribe partly to the existence of dissolved organic iodine that is not resolved during chromatography. To test this, we passed large volumes of seawater through solid phase extraction columns and analyzed the eluent using high-performance liquid chromatography ICP-MS. These analyses reveal a significant pool of dissolved organic iodine in open ocean seawater, the concentration and complexity of which diminish with increasing water depth. Finally, we analyzed the rates of IO3−formation using shipboard incubations of surface seawater amended with129I−. These experiments suggest that intermediate iodine species oxidize to IO3−much faster than I−does, and that rates of IO3−formation are dependent on the presence of particles, but not light levels. Our study documents the dynamics of iodine cycling in the subtropical ocean, highlighting the critical role of intermediates in mediating redox transformations between the major inorganic iodine species.more » « less
-
Anammox bacteria inhabiting oxygen-deficient zones (ODZs) are a major functional group mediating fixed nitrogen loss in the global ocean. However, many basic questions regarding the diversity, broad metabolisms, origin, and adaptive mechanisms of ODZ anammox bacteria remain unaddressed. Here we report two novel metagenome-assembled genomes of anammox bacteria affiliated with the Scalindua genus, which represent most, if not all, of the anammox bacteria in the global ODZs. Metagenomic read-recruiting and comparison with historical data show that they are ubiquitously present in all three major ODZs. Beyond the core anammox metabolism, both organisms contain cyanase, and the more dominant one encodes a urease, indicating most ODZ anammox bacteria can utilize cyanate and urea in addition to ammonium. Molecular clock analysis suggests that the evolutionary radiation of these bacteria into ODZs occurred no earlier than 310 million years ago, ~1 billion years after the emergence of the earliest modern-type ODZs. Different strains of the ODZ Scalindua species are also found in benthic sediments, and the first ODZ Scalindua is likely derived from the benthos. Compared to benthic strains of the same clade, ODZ Scalindua uniquely encodes genes for urea utilization but has lost genes related to growth arrest, flagellum synthesis, and chemotaxis, presumably for adaptation to thrive in the global ODZ waters. Our findings expand the known metabolisms and evolutionary history of the bacteria controlling the global nitrogen budget.more » « less
An official website of the United States government

