We study the linear stability of a planar interface separating two fluids in relative motion, focusing on the symmetric configuration where the two fluids have the same properties (density, temperature, magnetic field strength, and direction). We consider the most general case with arbitrary sound speed cs, Alfvén speed vA, and magnetic field orientation. For the instability associated with the fast mode, we find that the lower bound of unstable shear velocities is set by the requirement that the projection of the velocity on to the fluid-frame wavevector is larger than the projection of the Alfvén speed on to the same direction, i.e. shear should overcome the effect of magnetic tension. In the frame where the two fluids move in opposite directions with equal speed v, the upper bound of unstable velocities corresponds to an effective relativistic Mach number $M_{\rm re}\equiv v/v_{\rm {f}\perp }\sqrt{(1-v_{\rm {f}\perp }^2)/(1-v^2)} \cos \theta =\sqrt{2}$, where $v_{\rm {f}\perp }=[v_{\rm {A}}^2+c_{\rm s}^2(1-v_{\rm {A}}^2)]^{1/2}$ is the fast speed assuming a magnetic field perpendicular to the wavevector (here, all velocities are in units of the speed of light), and θ is the laboratory-frame angle between the flow velocity and the wavevector projection on to the shear interface. Our results have implications for shear flows in the magnetospheres of neutron stars and black holes – both for single objects and for merging binaries – where the Alfvén speed may approach the speed of light.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
Abstract Magnetic reconnection is often invoked as a source of high-energy particles, and in relativistic astrophysical systems it is regarded as a prime candidate for powering fast and bright flares. We present a novel analytical model—supported and benchmarked with large-scale three-dimensional kinetic particle-in-cell simulations in electron–positron plasmas—that elucidates the physics governing the generation of power-law energy spectra in relativistic reconnection. Particles with Lorentz factor
γ ≳ 3σ (here,σ is the magnetization) gain most of their energy in the inflow region, while meandering between the two sides of the reconnection layer. Their acceleration time is , whereη rec≃ 0.06 is the inflow speed in units of the speed of light andω c=eB 0/mc is the gyrofrequency in the upstream magnetic field. They leave the region of active energization aftert esc, when they get captured by one of the outflowing flux ropes of reconnected plasma. We directly measuret escin our simulations and find thatt esc∼t accforσ ≳ few. This leads to a universal (i.e.,σ -independent) power-law spectrum for the particles undergoing active acceleration, and for the overall particle population. Our results help to shed light on the ubiquitous presence of power-law particle and photon spectra in astrophysical nonthermal sources. -
ABSTRACT We perform 2D particle-in-cell simulations of magnetic reconnection in electron-ion plasmas subject to strong Compton cooling and calculate the X-ray spectra produced by this process. The simulations are performed for trans-relativistic reconnection with magnetization 1 ≤ σ ≤ 3 (defined as the ratio of magnetic tension to plasma rest-mass energy density), which is expected in the coronae of accretion discs around black holes. We find that magnetic dissipation proceeds with inefficient energy exchange between the heated ions and the Compton-cooled electrons. As a result, most electrons are kept at a low temperature in Compton equilibrium with radiation, and so thermal Comptonization cannot reach photon energies $\sim 100\,$ keV observed from accreting black holes. Nevertheless, magnetic reconnection efficiently generates $\sim 100\,$ keV photons because of mildly relativistic bulk motions of the plasmoid chain formed in the reconnection layer. Comptonization by the plasmoid motions dominates the radiative output and controls the peak of the radiation spectrum Epk. We find Epk ∼ 40 keV for σ = 1 and Epk ∼ 100 keV for σ = 3. In addition to the X-ray peak around 100 keV, the simulations show a non-thermal MeV tail emitted by a non-thermal electron population generated near X-points of the reconnection layer. The results are consistent with the typical hard state of accreting black holes. In particular, we find that the spectrum of Cygnus X-1 is well explained by electron-ion reconnection with σ ∼ 3.