We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems. Specifically, two classes of state ensembles are considered: those formed by (i) the temporal trajectory of a quantum state under unitary evolution or (ii) the quantum states of small subsystems obtained by partial, local projective measurements performed on their complements. These cases, respectively, exemplify the phenomena of “Hilbert-space ergodicity” and “deep thermalization.” In both cases, the resultant ensembles are defined by a simple principle: The distributions of pure states have maximum entropy, subject to constraints such as energy conservation, and effective constraints imposed by thermalization. We present and numerically verify quantifiable signatures of this principle by deriving explicit formulas for all statistical moments of the ensembles, proving the necessary and sufficient conditions for such universality under widely accepted assumptions, and describing their measurable consequences in experiments. We further discuss information-theoretic implications of the universality: Our ensembles have maximal information content while being maximally difficult to interrogate, establishing that generic quantum state ensembles that occur in nature hide (scramble) information as strongly as possible. Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization from infinite to finite effective temperature. Our work presents new perspectives to characterize and understand universal behaviors of quantum dynamics using statistical and information-theoretic tools. Published by the American Physical Society2024
more »
« less
This content will become publicly available on November 25, 2025
Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity
We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems. Specifically, two classes of state ensembles are considered: those formed by (i) the temporal trajectory of a quantum state under unitary evolution or (ii) the quantum states of small subsystems obtained by partial, local projective measurements performed on their complements. These cases, respectively, exemplify the phenomena of “Hilbert-space ergodicity” and “deep thermalization.” In both cases, the resultant ensembles are defined by a simple principle: The distributions of pure states have maximum entropy, subject to constraints such as energy conservation, and effective constraints imposed by thermalization. We present and numerically verify quantifiable signatures of this principle by deriving explicit formulas for all statistical moments of the ensembles, proving the necessary and sufficient conditions for such universality under widely accepted assumptions, and describing their measurable consequences in experiments. We further discuss information-theoretic implications of the universality: Our ensembles have maximal information content while being maximally difficult to interrogate, establishing that generic quantum state ensembles that occur in nature hide (scramble) information as strongly as possible. Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization from infinite to finite effective temperature. Our work presents new perspectives to characterize and understand universal behaviors of quantum dynamics using statistical and information-theoretic tools.
more »
« less
- Award ID(s):
- 1753386
- PAR ID:
- 10561448
- Publisher / Repository:
- Physical Review
- Date Published:
- Journal Name:
- Physical Review
- ISSN:
- 0031-899X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite its long history, a canonical formulation of quantum ergodicity that applies to general classes of quantum dynamics, including driven systems, has not been fully established. Here we introduce and study a notion of quantum ergodicity for closed systems with time-dependent Hamiltonians, defined as statistical randomness exhibited in their longtime dynamics. Concretely, we consider the temporal ensemble of quantum states (time-evolution operators) generated by the evolution, and investigate the conditions necessary for them to be statistically indistinguishable from uniformly random states (operators) in the Hilbert space (space of unitaries). We find that the number of driving frequencies underlying the Hamiltonian needs to be sufficiently large for this to occur. Conversely, we show that statistical —indistinguishability up to some large but finite moment—can already be achieved by a quantum system driven with a single frequency, i.e., a Floquet system, as long as the driving period is sufficiently long. Our work relates the complexity of a time-dependent Hamiltonian and that of the resulting quantum dynamics, and offers a fresh perspective to the established topics of quantum ergodicity and chaos from the lens of quantum information. Published by the American Physical Society2024more » « less
-
The unitary group acting on the Hilbert space $${\cal H}:=(C^2)^{\otimes 3}$$ of three quantum bits admits a Lie subgroup, $$U^{S_3}(8)$$, of elements which permute with the symmetric group of permutations of three objects. Under the action of such a Lie subgroup, the Hilbert space $${\cal H}$$ splits into three invariant subspaces of dimensions $$4$$, $$2$$ and $$2$$ respectively, each corresponding to an irreducible representation of $su(2)$. The subspace of dimension $$4$$ is uniquely determined and corresponds to states that are themselves invariant under the action of the symmetric group. This is the so called {\it symmetric sector.} The subspaces of dimension two are not uniquely determined and we parametrize them all. We provide an analysis of pure states that are in the subspaces invariant under $$U^{S_3}(8)$. This concerns their entanglement properties, separability criteria and dynamics under the Lie subgroup $$U^{S_3}(8)$$. As a physical motivation for the states and dynamics we study, we propose a physical set-up which consists of a symmetric network of three spin $$\frac{1}{2}$$ particles under a common driving electro-magnetic field. {For such system, we solve the control theoretic problem of driving a separable state to a state with maximal distributed entanglement.more » « less
-
The dynamics of quantum systems unfolds within a subspace of the state space or operator space, known as the Krylov space. This review presents the use of Krylov subspace methods to provide an efficient description of quantum evolution and quantum chaos, with emphasis on nonequilibrium phenomena of many-body systems with a large Hilbert space. It provides a comprehensive update of recent developments, focused on the quantum evolution of operators in the Heisenberg picture as well as pure and mixed states. It further explores the notion of Krylov complexity and associated metrics as tools for quantifying operator growth, their bounds by generalized quantum speed limits, the universal operator growth hypothesis, and its relation to quantum chaos, scrambling, and generalized coherent states. A comparison of several generalizations of the Krylov construction for open quantum systems is presented. A closing discussion addresses the application of Krylov subspace methods in quantum field theory, holog- raphy, integrability, quantum control, and quantum computing, as well as current open problems.more » « less
-
In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected.more » « less
An official website of the United States government
