Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance.
more »
« less
Homotopical foundations of parametrized quantum spin systems
In this paper, we present a homotopical framework for studying invertible gapped phases of matter from the point of view of infinite spin lattice systems, using the framework of algebraic quantum mechanics. We define the notion of quantum state types. These are certain lax-monoidal functors from the category of finite-dimensional Hilbert spaces to the category of topological spaces. The universal example takes a finite-dimensional Hilbert space [Formula: see text] to the pure state space of the quasi-local algebra of the quantum spin system with Hilbert space [Formula: see text] at each site of a specified lattice. The lax-monoidal structure encodes the tensor product of states, which corresponds to stacking for quantum systems. We then explain how to formally extract parametrized phases of matter from quantum state types, and how they naturally give rise to [Formula: see text]-spaces for an operad we call the “multiplicative” linear isometry operad. We define the notion of invertible quantum state types and explain how the passage to phases for these is related to group completion. We also explain how invertible quantum state types give rise to loop-spectra. Our motivation is to provide a framework for constructing Kitaev’s loop-spectrum of bosonic invertible gapped phases of matter. Finally, as a first step toward understanding the homotopy types of the loop-spectra associated to invertible quantum state types, we prove that the pure state space of any UHF algebra is simply connected.
more »
« less
- Award ID(s):
- 2055501
- PAR ID:
- 10518465
- Publisher / Repository:
- Reviews in Mathematical Physics
- Date Published:
- Journal Name:
- Reviews in Mathematical Physics
- ISSN:
- 0129-055X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider how the outputs of the Kadison transitivity theorem and Gelfand–Naimark–Segal (GNS) construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation [Formula: see text] of a [Formula: see text]-algebra [Formula: see text] and [Formula: see text], there exists a continuous function [Formula: see text] such that [Formula: see text] for all [Formula: see text], where [Formula: see text] is the set of pairs of [Formula: see text]-tuples [Formula: see text] such that the components of [Formula: see text] are linearly independent. Versions of this result where [Formula: see text] maps into the self-adjoint or unitary elements of [Formula: see text] are also presented. Regarding the GNS construction, we prove that given a topological [Formula: see text]-algebra fiber bundle [Formula: see text], one may construct a topological fiber bundle [Formula: see text] whose fiber over [Formula: see text] is the space of pure states of [Formula: see text] (with the norm topology), as well as bundles [Formula: see text] and [Formula: see text] whose fibers [Formula: see text] and [Formula: see text] over [Formula: see text] are the GNS Hilbert space and closed left ideal, respectively, corresponding to [Formula: see text]. When [Formula: see text] is a smooth fiber bundle, we show that [Formula: see text] and [Formula: see text] are also smooth fiber bundles; this involves proving that the group of ∗-automorphisms of a [Formula: see text]-algebra is a Banach Lie group. In service of these results, we review the topology and geometry of the pure state space. A simple non-interacting quantum spin system is provided as an example illustrating the physical meaning of some of these results.more » « less
-
In this study, we examine the quantization of Hall conductance in an infinite plane geometry. We consider a microscopic charge-conserving system with a pure, gapped infinite-volume ground state. While Hall conductance is well-defined in this scenario, existing proofs of its quantization have relied on assumptions of either weak interactions, or properties of finite volume ground state spaces, or invertibility. Here, we assume that the conditions necessary to construct the braided [Formula: see text]-tensor category which describes anyonic excitations are satisfied, and we demonstrate that the Hall conductance is rational if the tensor category is finite.more » « less
-
We discuss the exact non-invertible Kramers-Wannier symmetry of 1+1d lattice models on a tensor product Hilbert space of qubits. This symmetry is associated with a topological defect and a conserved operator, and the latter can be presented as a matrix product operator. Importantly, unlike its continuum counterpart, the symmetry algebra involves lattice translations. Consequently, it is not described by a fusion category. In the presence of this defect, the symmetry algebra involving parity/time-reversal is realized projectively, which is reminiscent of an anomaly. Different Hamiltonians with the same lattice non-invertible symmetry can flow in their continuum limits to infinitely many different fusion categories (with different Frobenius-Schur indicators), including, as a special case, the Ising CFT. The non-invertible symmetry leads to a constraint similar to that of Lieb-Schultz-Mattis, implying that the system cannot have a unique gapped ground state. It is either in a gapless phase or in a gapped phase with three (or a multiple of three) ground states, associated with the spontaneous breaking of the lattice non-invertible symmetry.more » « less
-
A bstract In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category such that its monoidal center is trivial. We also study the categorical descriptions of the boundaries of these models. In the end, we obtain a classification of and the categorical descriptions of all 1-dimensional (spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry.more » « less
An official website of the United States government

