Abstract We present a new self-consistent semianalytic model of the first stars and galaxies to explore the high-redshift (z≥ 15) Population III (PopIII) and metal-enriched star formation histories. Our model includes the detailed merger history of dark matter halos generated with Monte Carlo merger trees. We calibrate the minimum halo mass for PopIII star formation from recent hydrodynamical cosmological simulations that simultaneously include the baryon–dark matter streaming velocity, Lyman–Werner (LW) feedback, and molecular hydrogen self-shielding. We find an overall increase in the resulting star formation rate density (SFRD) compared to calibrations based on previous simulations (e.g., the PopIII SFRD is over an order of magnitude higher atz= 35−15). We evaluate the effect of the halo-to-halo scatter in this critical mass and find that it increases the PopIII stellar mass density by a factor ∼1.5 atz≥ 15. Additionally, we assess the impact of various semianalytic/analytic prescriptions for halo assembly and star formation previously adopted in the literature. For example, we find that models assuming smooth halo growth computed via abundance matching predict SFRDs similar to the merger tree model for our fiducial model parameters, but that they may underestimate the PopIII SFRD in cases of strong LW feedback. Finally, we simulate subvolumes of the Universe with our model both to quantify the reduction in total star formation in numerical simulations due to a lack of density fluctuations on spatial scales larger than the simulation box, and to determine spatial fluctuations in SFRD due to the diversity in halo abundances and merger histories.
more »
« less
A Framework to Calibrate a Semianalytic Model of the First Stars and Galaxies to the Renaissance Simulations
Abstract We present a method that calibrates a semianalytic model to the Renaissance Simulations, a suite of cosmological hydrodynamical simulations with high-redshift galaxy formation. This approach combines the strengths of semianalytic techniques and hydrodynamical simulations, enabling the extension to larger volumes and lower redshifts that are inaccessible to simulations due to computational expense. Using a sample of Renaissance star formation histories from an average density region of the Universe, we construct a four-parameter prescription for metal-enriched star formation characterized by an initial bursty stage followed by a steady stage where stars are formed at constant efficiencies. Our model also includes a treatment of Pop III star formation where a minimum halo mass and log-normal distribution of stellar mass are adopted to match the numerical simulations. Star formation is generally well reproduced for halos with masses ≲109M⊙. Between 11 <z< 25 our model produces metal-enriched star formation rate densities (SFRDs) that typically agree with Renaissance within a factor of ∼2 for the average density region. Additionally, the total metal-enriched stellar mass only differs from Renaissance by about 10% atz∼ 11. For regions that are either more overdense or rarefied and not included in the calibration, we produce metal-enriched SFRDs that agree with Renaissance within a factor of ∼2 at high-zbut eventually differ by higher factors for later times. This is likely due to environmental dependencies not included in the model. Our star formation prescriptions can easily be adopted in other analytic or semianalytic works to match our calibration to Renaissance.
more »
« less
- Award ID(s):
- 2009309
- PAR ID:
- 10561514
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 978
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 13
- Size(s):
- Article No. 13
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We introduce the Phoenix Simulations, a suite of highly resolved cosmological simulations featuring hydrodynamics, primordial gas chemistry, primordial and enriched star formation and feedback, UV radiative transfer, and saved outputs with Δt= 200 kyr. We observe 73,523 individual primordial stars within 3313 distinct regions forming 2110 second-generation enriched star clusters byz≥ 12 within a combined 177.25 Mpc3volume across three simulations. The regions that lead to enriched star formation can contain ≳150 primordial stars, with 80% of regions having experienced combinations of primordial Type II, hypernovae, and/or pair-instability supernovae. Primordial supernovae enriched 0.8% of the volume, with 2% of enriched gas enriched by later-generation stars. We determine the extent of a primordial stellar region by its metal-rich or ionized hydrogen surrounding cloud; the metal-rich and ionized regions have time-dependent average radiir≲ 3more » « less
kpc. 7 and 17% of regions haver> 7 kpc for metal-rich and ionized radii, respectively. We find that the metallicity distribution function of second-generation stars overlaps that of subsequent Population II star formation, spanning metal-deficient (∼7.94 × 10−8Z⊙) to supersolar (∼3.71Z⊙), and that 30.5% of second-generation stars haveZ> 10−2Z⊙. We find that the metallicity of second-generation stars depends on progenitor configuration, with metals from pair-instability supernovae contributing to the most metal-rich clusters; these clusters form promptly after the supernova event. Finally, we create an interpretable regression model to predict the radius of the metal-rich influence of Population III star systems within the first 7–18 Myr after the first Population III stars form in the region. -
We use a well-motivated galaxy formation framework to predict stellar masses, star formation rates (SFR), and ultraviolet (UV) luminosities of galaxy populations at redshifts $$z\in 5-16$$, taking into account stochasticity of SFR in a controlled manner. We demonstrate that the model can match observational estimates of UV luminosity functions (LFs) at $5<10$ with a modest level of SFR stochasticity, resulting in the scatter of absolute UV luminosity at a given halo mass of $$\sigma_{M_{\rm UV}}\approx 0.75$$. To match the observed UV LFs at $$z\approx 11-13$$ and $$z\approx 16$$ the SFR stochasticity should increase so that $$\sigma_{M_{\rm UV}}\approx 1-1.3$$ and $$\approx 2$$, respectively. Model galaxies at $$z\approx 11-13$$ have stellar masses and SFRs in good agreement with existing measurements. The median fraction of the baryon budget that was converted into stars, $$f_\star$$, is only $$f_\star\approx 0.005-0.05$$, but a small fraction of galaxies at $z=16$ have $$f_\star>1$$ indicating that SFR stochasticity cannot be higher. We discuss several testable consequences of the increased SFR stochasticity at $z>10$. The increase of SFR stochasticity with increasing $$z$$, for example, prevents steepening of UV LF and even results in some flattening of UV LF at $$z\gtrsim 13$$. The median stellar ages of model galaxies at $$z\approx 11-16$$ are predicted to decrease from $$\approx 20-30$$ Myr for $$M_{\rm UV}\gtrsim -21$$ galaxies to $$\approx 5-10$$ Myr for brighter ones. Likewise, the scatter in median stellar age is predicted to decrease with increasing luminosity. The scatter in the ratio of star formation rates averaged over 10 and 100 Myr should increase with redshift. Fluctuations of ionizing flux should increase at $z>10$ resulting in the increasing scatter in the line fluxes and their ratios for the lines sensitive to ionization parameter.more » « less
-
Abstract We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation (available at http://flathub.flatironinstitute.org/fire ) from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multiphase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Type Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from three suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way (MW)–mass galaxies, five SMC/LMC-mass galaxies, and four lower-mass galaxies including one ultrafaint; we release 39 snapshots across z = 0–10. The second comprises four massive galaxies, with 19 snapshots across z = 1–10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across z = 5–10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to z = 0, including all MW-mass galaxies, we release the formation coordinates and an “ex situ” flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations.more » « less
-
Abstract Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M⊙. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.more » « less
An official website of the United States government
