skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative evaluation of melt- vs. solution-printed poly(ε-caprolactone)/hydroxyapatite scaffolds for bone tissue engineering applications
Solution and melt 3D printing techniques were compared for fabricating PCL/HA scaffolds. Solution printing resulted in porous, rougher scaffolds, while melt printing produced stiffer scaffolds with enhanced bone formation.  more » « less
Award ID(s):
2044479
PAR ID:
10561555
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Soft Matter
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Melt electrowriting (MEW) is an emerging additive process for high‐fidelity, microscale fibrous scaffold fabrication. However, achieving precise multilayered MEW‐enabled scaffolds is limited by the entrapped residual charges owing to charge‐based mechanisms. Specifically, the semi‐conductive nature of processed materials causes retainment of net positive charges and jet–fiber repulsion, while exposure to the electric field yields charge polarization with resultant jet–fiber attraction. These competing effects work in tandem to determine the distinctive features of jet–fiber interaction. To deconstruct various charge‐related phenomena, the collector temperature is manipulated as a key process variable to investigate its effect on printing outcomes in two printing modes. Moreover, energy analysis is introduced to explain how collector temperature affects the polarization extent, along with the jet–fiber interaction and printing outcomes. In single fiber printing mode, sets of two parallel fibers with variable set interfiber distances (sSf) are printed at different collector temperatures. At a lowsSfthreshold, significant fiber attraction is observed, but no significant difference is observed among the cases at different collector temperatures. In scaffold printing mode, 200‐layer scaffolds are printed at different collector temperatures, and the wall morphologies are found to vary with location, layer number, and collector temperature. 
    more » « less
  2. null (Ed.)
    Melt electrohydrodynamic processes, in conjunction with a moveable collector, have promising engineered tissue applications. However, the residual charges within the fibers deteriorate its printing fidelity. To clarify the mechanism through which the residual charges play roles and exclude the confounding effects of collector movement, a stationary printing mode is adopted in which fibers deposit on a stationary collector. Effects of process parameters on generalizable printing outcomes are studied herein. The fiber deposit bears a unique shape signature typified by a central cone surrounded by an outer ring and is characterized by a ratio of its height and base diameter Hdep/Ddep. Results indicate Hdep/Ddep increases with collector temperature and decreases slightly with voltage. Moreover, the steady-state dynamic jet deposition process is recorded and analyzed at different collector temperatures. A charge-based polarization mechanism describing the effect of collector temperature on the fiber accumulating shape is apparent in both initial and steady-state phases of fiber deposition. Therefore, a key outcome of this study is the identification and mechanistic understanding of collector temperature as a tunable process variable that can yield predictable structural outcomes. This may have cross-cutting potential for additive manufacturing process applications such as the melt electrowriting of layered scaffolds. 
    more » « less
  3. Abstract The printing accuracy of the melt electrowriting (MEW) process is adversely affected by residual charge entrapped within the printed fibers. To mitigate this effect, the residual charge amount (Qr) must first be accurately determined. In this study,Qris measured by a commercial electrometer at a nanocoulomb scale for MEW‐enabled scaffolds. Based on this enabling measurement, the effects of various design parameters (including substrate surface conductivityσ, printing timet, layer numberN), and process parameters (including voltageU, translational stage speedv, and material temperatureTm), onQrare investigated. An increase ofσor decrease ofNhelps to decreaseQr. The effects of different process parameters on the residual charge can be either dependent or independent of fiber morphologies. Moreover, the fiber‐morphology dependent and independent effect can be either synergistic (UandTm) or antagonistic (e.g.,v) for different process parameters. Under same conditions,Qrin the interweaving scaffold design is generally smaller than that in the non‐interweaving scaffold design. These results help to furnish necessary insights into the charge dissipation process for a melt‐based electrohydrodynamic printing process while providing a systematic methodology to mitigate the residual charge accumulation. 
    more » « less
  4. Abstract Adhesive tissue engineering scaffolds (ATESs) have emerged as an innovative alternative means, replacing sutures and bioglues, to secure the implants onto target tissues. Relying on their intrinsic tissue adhesion characteristics, ATES systems enable minimally invasive delivery of various scaffolds. This study investigates development of the first class of 3D bioprinted ATES constructs using functionalized hydrogel bioinks. Two ATES delivery strategies, in situ printing onto the adherend versus printing and then transferring to the target surface, are tested using two bioprinting methods, embedded versus air printing. Dopamine‐modified methacrylated hyaluronic acid (HAMA‐Dopa) and gelatin methacrylate (GelMA) are used as the main bioink components, enabling fabrication of scaffolds with enhanced adhesion and crosslinking properties. Results demonstrate that dopamine modification improved adhesive properties of the HAMA‐Dopa/GelMA constructs under various loading conditions, while maintaining their structural fidelity, stability, mechanical properties, and biocompatibility. While directly printing onto the adherend yields superior adhesive strength, embedded printing followed by transfer to the target tissue demonstrates greater potential for translational applications. Together, these results demonstrate the potential of bioprinted ATESs as off‐the‐shelf medical devices for diverse biomedical applications. 
    more » « less
  5. Abstract Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous β-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45–60%) and fluid conductance (between 1.04 ×10 −9 and 2.27 × 10 −9  m 4 s/kg) of the β-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications. 
    more » « less