skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is the optical conductivity of heavy fermion strange metals Planckian?
Strange metal behavior appears across a variety of condensed matter settings and beyond, and achieving a universal understanding is an exciting prospect. The beyond-Landau quantum criticality of Kondo destruction has had considerable success in describing the behavior of strange metal heavy fermion compounds, and there is some evidence that the associated partial localization-delocalization nature can be generalized to diverse materials classes. Other potential overarching principles at play are also being explored. An intriguing proposal is that Planckian scattering, with a rate ofkBT/ℏ, leads to the linear temperature dependence of the (dc) electrical resistivity, which is a hallmark of strange metal behavior. Here we extend a previously introduced analysis scheme based on the Drude description of the dc resistivity to optical conductivity data. When they are well described by a simple (ac) Drude model, the scattering rate can be directly extracted. This avoids the need to determine the ratio of charge carrier concentration to effective mass, which has complicated previous analyses based on the dc resistivity. However, we point out that strange metals typically exhibit strong deviations from Drude behavior, as exemplified by the “extreme” strange metal YbRh2Si2. This calls for alternative approaches, and we point to the power of strange metal dynamical (energy-over-temperature) scaling analyses for the inelastic part of the optical conductivity. If such scaling extends to the low-frequency limit, a strange metal relaxation rate can be estimated, and may ultimately be used to test whether strange metals relax in a Planckian manner.  more » « less
Award ID(s):
2220603
PAR ID:
10561729
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Electronic Materials
Volume:
2
ISSN:
2673-9895
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Landau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m ⋆ . Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe–Regel–Mott limit is accompanied by a ‘displaced Drude peak’ in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition. 
    more » « less
  2. Abstract In various so-called strange metals, electrons undergo Planckian dissipation 1,2 , a strong and anomalous scattering that grows linearly with temperature 3 , in contrast to the quadratic temperature dependence expected from the standard theory of metals. In some cuprates 4,5 and pnictides 6 , a linear dependence of resistivity on a magnetic field has also been considered anomalous—possibly an additional facet of Planckian dissipation. Here we show that the resistivity of the cuprate strange metals Nd 0.4 La 1.6− x Sr x CuO 4 (ref. 7 ) and La 2− x Sr x CuO 4 (ref. 8 ) is quantitatively consistent with the standard Boltzmann theory of electron motion in a magnetic field, in all aspects—field strength, field direction, temperature and disorder level. The linear field dependence is found to be simply the consequence of scattering rate anisotropy. We conclude that Planckian dissipation is anomalous in its temperature dependence, but not in its field dependence. The scattering rate in these cuprates does not depend on field, which means that their Planckian dissipation is robust against fields up to at least 85 T. 
    more » « less
  3. Strange metals—ubiquitous in correlated quantum materials—transport electrical charge at low temperatures but not by the individual electronic quasiparticle excitations, which carry charge in ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum critical scalars, the latter representing order parameters or fractionalized particles. We show that at low temperatures (T), such metals generically exhibit strange metal behavior with aT-linear resistivity arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero spatial average. We also find aTln(1/T) specific heat and a rationale for the Planckian bound on the transport scattering time. These results are in agreement with observations and are obtained in the largeNexpansion of an ensemble of critical metals withNfermion flavors. 
    more » « less
  4. Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh 2 Si 2 , a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter. 
    more » « less
  5. S trange-metal behavior has been observed in materials ranging from high-temperature superconductors to heavy fermion metals. In conventional metals, current is carried by quasiparticles; although it has been suggested that quasiparticles are absent in strange metals, direct experimental evidence is lacking. We measured shot noise to probe the granularity of the current-carrying excitations in nanowires of the heavy fermion strange metal YbRh2Si2. When compared with conventional metals, shot noise in these nanowires is strongly suppressed. This suppression cannot be attributed to either electron-phonon or electron-electron interactions in a Fermi liquid, which suggests that the current is not carried by well-defined quasiparticles in the strange-metal regime that we probed. Our work sets the stage for similar studies of other strange metals. 
    more » « less