Strange metal behavior appears across a variety of condensed matter settings and beyond, and achieving a universal understanding is an exciting prospect. The beyond-Landau quantum criticality of Kondo destruction has had considerable success in describing the behavior of strange metal heavy fermion compounds, and there is some evidence that the associated partial localization-delocalization nature can be generalized to diverse materials classes. Other potential overarching principles at play are also being explored. An intriguing proposal is that Planckian scattering, with a rate ofkBT/ℏ, leads to the linear temperature dependence of the (dc) electrical resistivity, which is a hallmark of strange metal behavior. Here we extend a previously introduced analysis scheme based on the Drude description of the dc resistivity to optical conductivity data. When they are well described by a simple (ac) Drude model, the scattering rate can be directly extracted. This avoids the need to determine the ratio of charge carrier concentration to effective mass, which has complicated previous analyses based on the dc resistivity. However, we point out that strange metals typically exhibit strong deviations from Drude behavior, as exemplified by the “extreme” strange metal YbRh2Si2. This calls for alternative approaches, and we point to the power of strange metal dynamical (energy-over-temperature) scaling analyses for the inelastic part of the optical conductivity. If such scaling extends to the low-frequency limit, a strange metal relaxation rate can be estimated, and may ultimately be used to test whether strange metals relax in a Planckian manner.
more »
« less
Singular charge fluctuations at a magnetic quantum critical point
Strange metal behavior is ubiquitous in correlated materials, ranging from cuprate superconductors to bilayer graphene, and may arise from physics beyond the quantum fluctuations of a Landau order parameter. In quantum-critical heavy-fermion antiferromagnets, such physics may be realized as critical Kondo entanglement of spin and charge and probed with optical conductivity. We present terahertz time-domain transmission spectroscopy on molecular beam epitaxy–grown thin films of YbRh 2 Si 2 , a model strange-metal compound. We observed frequency over temperature scaling of the optical conductivity as a hallmark of beyond-Landau quantum criticality. Our discovery suggests that critical charge fluctuations play a central role in the strange metal behavior, elucidating one of the long-standing mysteries of correlated quantum matter.
more »
« less
- PAR ID:
- 10313388
- Date Published:
- Journal Name:
- Science
- Volume:
- 367
- Issue:
- 6475
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The strange metal phase of correlated electrons materials was described in a recent theory by a model of a Fermi surface coupled a two-dimensional quantum critical bosonic field with a spatially random Yukawa coupling. With the assumption of self-averaging randomness, similar to that in the Sachdev–Ye–Kitaev model, numerous observed properties of a strange metal were obtained for a wide range of intermediate temperatures, including the linear in temperature resistivity. The Harris criterion implies that spatial fluctuations in the local position of the critical point must dominate at lower temperatures. For an -component boson with , we use multiple graphics processing units (GPUs) to compute the real frequency spectrum of the boson propagator in a self-consistent mean-field treatment of the boson self-interactions, but an exact treatment of multiple realizations of the spatial randomness from the random boson mass. We find that Landau damping from the fermions leads to the emergence of the physics of the random transverse-field Ising model at low temperatures, as has been proposed by Hoyos, Kotabage, and Vojta. This regime is controlled by localized overdamped eigenmodes of the bosonic scalar field, also has a resistivity which is nearly linear-in-temperature, and extends into a “quantum critical phase” away from the quantum critical point, as observed in several cuprates. For the Ising scalar, the mean-field treatment is not applicable, and so we use Hybrid Monte Carlo simulations running on multiple GPUs; we find a rounded transition and localization physics, with strange metal behavior in an extended region around the transition.more » « less
-
Strange metals—ubiquitous in correlated quantum materials—transport electrical charge at low temperatures but not by the individual electronic quasiparticle excitations, which carry charge in ordinary metals. In this work, we consider two-dimensional metals of fermions coupled to quantum critical scalars, the latter representing order parameters or fractionalized particles. We show that at low temperatures (T), such metals generically exhibit strange metal behavior with aT-linear resistivity arising from spatially random fluctuations in the fermion-scalar Yukawa couplings about a nonzero spatial average. We also find aTln(1/T) specific heat and a rationale for the Planckian bound on the transport scattering time. These results are in agreement with observations and are obtained in the largeNexpansion of an ensemble of critical metals withNfermion flavors.more » « less
-
null (Ed.)Abstract Landau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass m ⋆ . Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe–Regel–Mott limit is accompanied by a ‘displaced Drude peak’ in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition.more » « less
-
Abstract Advancements in materials synthesis have been key to unveil the quantum nature of electronic properties in solids by providing experimental reference points for a correct theoretical description. Here, we report hidden transport phenomena emerging in the ultraclean limit of the archetypical correlated electron system SrVO3. The low temperature, low magnetic field transport was found to be dominated by anisotropic scattering, whereas, at high temperature, we find a yet undiscovered phase that exhibits clear deviations from the expected Landau Fermi liquid, which is reminiscent of strange-metal physics in materials on the verge of a Mott transition. Further, the high sample purity enabled accessing the high magnetic field transport regime at low temperature, which revealed an anomalously high Hall coefficient. Taken with the strong anisotropic scattering, this presents a more complex picture of SrVO3that deviates from a simple Landau Fermi liquid. These hidden transport anomalies observed in the ultraclean limit prompt a theoretical reexamination of this canonical correlated electron system beyond the Landau Fermi liquid paradigm, and more generally serves as an experimental basis to refine theoretical methods to capture such nontrivial experimental consequences emerging in correlated electron systems.more » « less
An official website of the United States government

