Abstract Managing fragile island freshwater resources requires identifying pumping strategies that trade off the financial cost of groundwater supply against controlling the seawater intrusion (SWI) associated with aquifer pumping. In this work, these tradeoffs are investigated through a sensitivity analysis conducted in the context of an optimization formulation of the groundwater management problem, which aims at minimizing the groundwater supply operation cost associated with groundwater pumping and desalination treatment, subject to constraints on SWI control, as quantified by the water table drawdown over the well (∆s), the reduction in freshwater volume (∆FV) in the aquifer, or the salt mass increase (∆SM) in the aquifer. This study focuses on a simplified two‐dimensional model of the San Salvador Island aquifer (Bahamas). Pumping strategies are characterized by the distance of the pumping system from the shoreline (WL), the abstraction screen depth (D) and overall pumping rate (Q), constituting the decision variables of the optimization problem. We investigate the impacts of pumping strategies on the operation cost, ∆s, ∆FVand ∆SM. Findings indicate increasingDor decreasingWLreduces ∆s, ∆FVand ∆SM, thus preserving the aquifer hydrogeologic stability, but also leads to extracting saltier groundwater, thus increasing the water treatment requirements, which have a strong impact on the overall groundwater supply cost. From a financial perspective, groundwater abstraction near the island center and at shallow depths seems the most convenient strategy. However, the analysis of the optimization constraints reveals that strategies where the pumping system approaches the island center tend to cause more severe SWI, highlighting the need to trade off groundwater supply cost against SWI control.
more »
« less
An Efficient Surrogate-based Multi-objective Optimisation Framework with Novel Sampling Strategy for Sustainable Island Groundwater Management
Abstract. In groundwater pumping optimization (GPO), offline-trained data-driven surrogates can be used to replace numerical-intensive simulators in order to save computing time. The traditional offline training approach involves building surrogates prior to optimization, fitting training datasets that cover the input space uniformly or randomly, which can prove inefficient due to the potential oversampling of low-gradient areas and under-sampling of high-gradient areas. This study proposes an offline machine-learning (ML) algorithm that ranks candidate training points by scoring them based on their distance to the closest training point and on the local gradient of the surrogate estimate and then choosing the highest-rank point. This method is applied to develop surrogates for solving a two-objective GPO problem formulated on a three-dimensional (3D) island aquifer, using hydrogeological conditions representative of San Salvador Island, Bahamas. The objectives are to minimise the supply cost (fOC) resulting from groundwater pumping and desalination and maximise fresh groundwater supply (Qp), subject to constraints on seawater intrusion (SWI) control expressed in terms of aquifer drawdown Δs at pumping locations and aquifer salt mass increase ΔSM. Gaussian Process (GP) is the technique applied to construct surrogates of objectives and constraints, alongside the estimation of uncertainties. Using GP models, it is possible to estimate the probability of “Pareto optimality” for each pumping scheme by Monte Carlo simulation. Pareto optimal pumping schemes (POPS) are then characterized by a probability of occurrence, which can be verified by numerical simulation. The GP training strategy's effectiveness in generating POPS is compared to traditional training approaches, showing that such a strategy can efficiently identify reliable POPS.
more »
« less
- Award ID(s):
- 2022278
- PAR ID:
- 10561737
- Publisher / Repository:
- EGS
- Date Published:
- Journal Name:
- Advances in Geosciences
- Volume:
- 64
- ISSN:
- 1680-7359
- Page Range / eLocation ID:
- 23 to 26
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)This study identifies hydrogeologic characteristics of complex aquifers based on constructing stratigraphic structure with large, non-uniform well log data. The approach was validated through a modeling study of the irrigation-intensive Chicot aquifer system, which is an important Pleistocene-Holocene aquifer of the Coastal Lowlands aquifer system in the southwestern Louisiana. Various well log types were unified into the same data structure, prioritized based on data sources, and interpolated to generate a detailed stratigraphic structure. More than 29,000 well logs were integrated to construct a stratigraphy model of 56 model layers for the Chicot aquifer system. The stratigraphy model revealed interconnections of various sands in the system, where 90% of the model domain is covered by fine-grained sediments. Although the groundwater model estimated a slight groundwater storage gain during 2005–2014 for the entire region, groundwater storage in the agricultural area was depleted. Nevertheless, the quick groundwater storage recovery during the non-irrigation seasons suggests that the Chicot aquifer system is a prolific aquifer system. The groundwater modeling result shows that the gulfward groundwater flow direction prior to pumping has been reversed toward inland pumping areas. The large upward vertical flow from the deeper sands indicates potential saltwater migration from the base of the Chicot aquifer system.more » « less
-
Abstract Many irrigated agricultural areas seek to prolong the lifetime of their groundwater resources by reducing pumping. However, it is unclear how lagged responses, such as reduced groundwater recharge caused by more efficient irrigation, may impact the long‐term effectiveness of conservation initiatives. Here, we use a variably saturated, simplified surrogate groundwater model to: (a) analyze aquifer responses to pumping reductions, (b) quantify time lags between reductions and groundwater level responses, and (c) identify the physical controls on lagged responses. We explore a range of plausible model parameters for an area of the High Plains aquifer (USA) where stakeholder‐driven conservation has slowed groundwater depletion. We identify two types of lagged responses that reduce the long‐term effectiveness of groundwater conservation, recharge‐dominated and lateral‐flow‐dominated, with vertical hydraulic conductivity (KZ) the major controlling variable. When highKZallows percolation to reach the aquifer, more efficient irrigation reduces groundwater recharge. By contrast, when lowKZimpedes vertical flow, short term changes in recharge are negligible, but pumping reductions alter the lateral flow between the groundwater conservation area and the surrounding regions (lateral‐flow‐dominated response). For the modeled area, we found that a pumping reduction of 30% resulted in median usable lifetime extensions of 20 or 25 years, depending on the dominant lagged response mechanism (recharge‐ vs. lateral‐flow‐dominated). These estimates are far shorter than estimates that do not account for lagged responses. Results indicate that conservation‐based pumping reductions can extend aquifer lifetimes, but lagged responses can create a sizable difference between the initially perceived and actual long‐term effectiveness.more » « less
-
Abstract Deep groundwater is an important source of drinking water, and can be preferable to shallower groundwaters where they are polluted by surface-borne contaminants. Surface-borne contaminants are disproportionately common in ‘modern’ groundwaters that are made up of precipitation that fell since the ~1950s. Some local-scale studies have suggested that groundwater pumping can draw modern groundwater downward and potentially pollute deep aquifers, but the prevalence of such pumping-induced downwelling at continental scale is not known. Here we analyse thousands of US groundwater tritium measurements to show that modern groundwater tends to reach deeper depths in heavily pumped aquifer systems. These findings imply that groundwater pumping can draw mobile surface-borne pollutants to deeper depths than they would reach in the absence of pumping. We conclude that intensive groundwater pumping can draw recently recharged groundwater deeper into aquifer systems, potentially endangering deep groundwater quality.more » « less
-
Fossil groundwaters make up a substantial fraction of the Earth's fresh water and are being targeted for water supply wells at increasing rates. These groundwaters were recharged more than 12,000 years ago, often in climate conditions that were much different from those of today. Because of the long renewal times involved, fossil groundwaters have often been classified as nonrenewable. However, groundwater ages provide little insight into how water levels and fluxes will change as the result of pumping. The relationship between groundwater ages and these outcome-based metrics of renewability is not straightforward. Therefore, whether a groundwater is fossil or not may have little to do with its renewability. The hydraulic response of an aquifer system to pumping is not strongly related to groundwater age. The use of both modern and fossil groundwater can be unsustainable.more » « less
An official website of the United States government

