Abstract We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-bparameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Oviabsorption features and broader Siiiiabsorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Observational Signatures of AGN Feedback in the Morphology and the Ionization States of Milky Way-like Galaxies
                        
                    
    
            Abstract We make an in-depth analysis of different active galactic nuclei (AGN) jet models’ signatures, inducing quiescence in galaxies with a halo mass of 1012M⊙. Three jet models, including cosmic-ray-dominant, hot thermal, and precessing kinetic jets, are studied at two energy flux levels each, compared to a jet-free, stellar feedback-only simulation. Each of our simulations is idealized isolated galaxy simulations with AGN jet powers that are constant in time and generated using GIZMO and with FIRE stellar feedback. We examine the distribution of Mgii, Ovi, and Oviiiions, alongside gas temperature and density profiles. Low-energy ions, like Mgii, concentrate in the interstellar medium (ISM), while higher energy ions, e.g., Oviii, prevail at the AGN jet cocoon’s edge. High-energy flux jets display an isotropic ion distribution with lower overall density. High-energy thermal or cosmic-ray jets pressurize at smaller radii, significantly suppressing core density. The cosmic-ray jet provides extra pressure support, extending cool and warm gas distribution. A break in the ion-to-mass ratio slope in Oviand Oviiiis demonstrated in the ISM-to-circumgalactic medium (CGM) transition (between 10 and 30 kpc), growing smoothly toward the CGM at greater distances. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10561809
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 977
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 72
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)ABSTRACT Observations of ultraviolet (UV) metal absorption lines have provided insight into the structure and composition of the circumgalactic medium (CGM) around galaxies. We compare these observations with the low-redshift (z ≤ 0.3) CGM around dwarf galaxies in high-resolution cosmological zoom-in runs in the FIRE-2 (Feedback In Realistic Environments) simulation suite. We select simulated galaxies that match the halo mass, stellar mass, and redshift of the observed samples. We produce absorption measurements using trident for UV transitions of C iv, O vi, Mg ii, and Si iii. The FIRE equivalent width (EW) distributions and covering fractions for the C iv ion are broadly consistent with observations inside 0.5Rvir, but are underpredicted for O vi, Mg ii, and Si iii. The absorption strengths of the ions in the CGM are moderately correlated with the masses and star formation activity of the galaxies. The correlation strengths increase with the ionization potential of the ions. The structure and composition of the gas from the simulations exhibit three zones around dwarf galaxies characterized by distinct ion column densities: the discy interstellar medium, the inner CGM (the wind-dominated regime), and the outer CGM (the IGM accretion-dominated regime). We find that the outer CGM in the simulations is nearly but not quite supported by thermal pressure, so it is not in hydrostatic equilibrium, resulting in halo-scale bulk inflow and outflow motions. The net gas inflow rates are comparable to the star formation rate of the galaxy, but the bulk inflow and outflow rates are greater by an order of magnitude, with velocities comparable to the virial velocity of the halo. These roughly virial velocities ($${\sim } 100 \, \rm km\, s^{-1}$$) produce large EWs in the simulations. This supports a picture for dwarf galaxies in which the dynamics of the CGM at large scales are coupled to the small-scale star formation activity near the centre of their haloes.more » « less
- 
            ABSTRACT Without additional heating, radiative cooling of the halo gas of massive galaxies (Milky Way-mass and above) produces cold gas or stars exceeding that observed. Heating from active galactic nucleus (AGN) jets is likely required, but the jet properties remain unclear. This is particularly challenging for galaxy simulations, where the resolution is orders-of-magnitude insufficient to resolve jet formation and evolution. On such scales, the uncertain parameters include the jet energy form [kinetic, thermal, cosmic ray (CR)]; energy, momentum, and mass flux; magnetic fields; opening angle; precession; and duty cycle. We investigate these parameters in a $$10^{14}\, {\rm M}_{\odot }$$ halo using high-resolution non-cosmological magnetohydrodynamic simulations with the FIRE-2 (Feedback In Realistic Environments) stellar feedback model, conduction, and viscosity. We explore which scenarios qualitatively meet observational constraints on the halo gas and show that CR-dominated jets most efficiently quench the galaxy by providing CR pressure support and modifying the thermal instability. Mildly relativistic (∼MeV or ∼1010K) thermal plasma jets work but require ∼10 times larger energy input. For fixed energy flux, jets with higher specific energy (longer cooling times) quench more effectively. For this halo mass, kinetic jets are inefficient at quenching unless they have wide opening or precession angles. Magnetic fields also matter less except when the magnetic energy flux reaches ≳ 1044 erg s−1 in a kinetic jet model, which significantly widens the jet cocoon. The criteria for a successful jet model are an optimal energy flux and a sufficiently wide jet cocoon with a long enough cooling time at the cooling radius.more » « less
- 
            Abstract We investigate the 1D plane-parallel front connecting the warm (104K) and hot (106K) phases of the circumgalactic medium (CGM), focusing on the influence of cosmic rays (CRs) in shaping these transition layers. We find that cosmic rays dictate the thermal balance while other fluxes (thermal conduction, radiative cooling, and gas flow) adjust to compensate. We compute column densities and ratios for the transition-temperature ions Siiv, Civ, Ovi, and Nv, and compare them with observational data. While most models struggle to simultaneously reproduce the observed Siiv/Civand Civ/Oviratios, a subset with intermediate magnetic field strength (e.g.,B= 20μG) shows overlap with the data, although we make no claims for their uniqueness. These discrepancies suggest that the models perform better at reproducing higher-temperature ions but underestimate the contribution from cooler, photoionized regions. Compared to models without CRs, CR-mediated fronts in sufficiently strong magnetic fields produce broader transition layers and higher ion ratios, indicating that CRs can significantly alter the thermal and ionization structure of the CGM. Our results suggest that CR heating may help explain some observed ion columns under specific conditions, though additional physics may be needed for full agreement with observations.more » « less
- 
            ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $$\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few $${\sim}10^{4}\,$$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns $${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$$ at distances $${\gtrsim}150\, \mathrm{kpc}$$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($$T\gtrsim 10^{5}\,$$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
