skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response of ionizable block copolymer assemblies to solvent dielectrics: A molecular dynamics study
Ionizable copolymers assembly in solutions is driven by the formation of ionic clusters. Fast clustering of the ionizable blocks often leads to the formation of far-from equilibrium assemblies that ultimately impact the structure of polymer membranes and affect their many applications. Using large-scale atomistic molecular dynamics simulations, we probe the effects of electrostatics on the formation of ionizable copolymer micelles that dominate their solution structure, with the overarching goal of defining the factors that control the assembly of structured ionizable copolymers. A symmetric pentablock ionizable copolymer, with a randomly sulfonated polystyrene center tethered to polyethylene-r-propylene block, terminated by poly(t-butyl styrene), in solvents of varying dielectric constants from 2 to 20, serves as the model system. We find that independent of the solvents, this polymer forms a core–shell micelle with the ionizable segment segregating to the center of the assembly. The specific block conformation, however, strongly depends on the sulfonation levels and the dielectric constant and the polarity of the solvents.  more » « less
Award ID(s):
1905407
PAR ID:
10561817
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
19
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the most efficient and promising separation alternatives to thermal methods such as distillation is the use of polymeric membranes that separate mixtures based on molecular size or chemical affinity. Self-assembled block copolymer membranes have gained considerable attention within the membrane field due to precise control over nanoscale structure, pore size, and chemical versatility. Despite the rapid progress and excitement, a significant hurdle in using block copolymer membranes for nanometer and sub-nanometer separations such as nanofiltration and reverse osmosis is the lower limit on domain size features. Strategies such as polymer post-functionalization, self-assembly of oligomers, liquid crystals, and random copolymers, or incorporation of artificial/natural channels within block copolymer materials are future directions with the potential to overcome current limitations with respect to separation size. 
    more » « less
  2. Abstract The synthesis of stereoregular telechelic polypropylene (PP) and their use to access triblock amphiphilic copolymers with the PP block located in the center is described. The strategy consists of selectively copolymerizing propylene and a di‐functional co‐monomer (1,3‐diisopropenylbenzene) to yield a α,ω‐substituted polypropylene. Initiation of the copolymerization favors insertion of DIB over propylene; propagation steps favor insertion of propylene. Termination via a chain‐transfer reaction yields the terminal unsaturation of the polymer. The telechelic polypropylene is then converted into α,ω‐hydroxyl‐terminated polypropylene and used as a macroinitiator for the synthesis of triblock copolymers. Water‐soluble amphiphilic triblock polymers are also synthesized. The use of catalytic reactions simultaneously provides the stereocontrol of the polypropylene and high productivity (multiple chains of block copolymer per metal center). 
    more » « less
  3. We employ molecular dynamics (MD) simulations to investigate the mechanical behaviors of immiscible polymer interfaces enhanced by block copolymer compatibilizers. We show that the entanglement density at the interface, governed by the Flory–Huggins parameter χ, is critical for mechanical performance. Increasing immiscibility leads to sharper interfaces with reduced interfacial entanglements, resulting in easy chain pullout during tensile deformation and weaker interfacial strength. Adding block copolymer compatibilizers to the blends can switch the failure mechanism from interfacial chain pullout to bulk-phase crazing, substantially enhancing mechanical performance. Although long diblock and tetrablock copolymers only mildly increase the interfacial entanglement density, they can act as stress transmitters across the interface by entangling with chains in the bulk domains. Tetrablock copolymers are particularly effective for strengthening polymer blends by forming loops at the interface, making chain pullout topologically more difficult and promoting energy dissipation through crazing in the bulk regions. Our findings reveal the roles of both entanglement at interfaces and block copolymer architecture in the mechanical properties of immiscible polymer interfaces, which may guide the design of better compatibilizers for enhancing inhomogeneous polymer samples. 
    more » « less
  4. Facile and large-scale synthesis of well-defined, thermally stable silver nanoparticles protected by polymer brushes for use in practical applications is still a challenge. Recent work has reported a nanoreactor approach that can be used to synthesize these silver nanoparticles. This approach uses amphiphilic star-block copolymers, which have a hydrophilic core surrounded by a hydrophobic exterior. These polymers thus can serve as the nanoreactors. In this study, we hypothesize that the local high concentration of silver ions in the inner hydrophilic cores of these star-block copolymers facilitates the nucleation and subsequent growth of silver nanoparticles. When all silver nanoparticles nucleate from the cores of the star-block copolymers in solution, the particle size can be controlled by the core size of the polymer. To test this hypothesis, a polyisoprene-b-poly(p-tert-butylstyrene) (PI-b-PtBS) star-block copolymer was functionalized with carboxylic acid groups using a high-efficiency, photo-initiated thiol-ene click reaction. We characterized this modified polymer using proton nuclear magnetic resonance spectroscopy, and the results indicated that ~60% of the double bonds in the polyisoprene block were successfully functionalized with carboxylic acid groups. When silver ions were added to a solution of these functionalized star-block copolymers, the negatively charged carboxylic acid groups would attract the positively charged silver ions. Subsequent reduction of these Ag+ by a tert-butylamine-borane complex at room temperature produced nanosized silver particles. However, transmission electron microscopy images showed that a significant amount of relatively large silver nanoparticles grew outside the star-block copolymer nanoreactors. 
    more » « less
  5. The morphology of self-assembled block copolymer aggregates is highly dependent on the relative volume fraction of the hydrophobic block. Thus, a dramatic change in the volume fraction of the hydrophobic block can elicit on-demand morphological transitions. Herein, a novel hydrophobic monomer containing a photolabile nitrobenzyl (Nb) protecting group was synthesized and incorporated into a block copolymer with poly(ethylene glycol) methacrylate. This motif allows for the hydrophobic volume fraction of the amphiphilic block copolymer to be dramatically reduced in situ to induce a morphological transition upon irradiation with UV light. Two amphiphilic block copolymers, Nb 94 and Nb 176, with hydrophobic weight fractions of 80% and 86%, respectively, were synthesized and their self-assembly in water studied. Nb 94 assembled into vesicles with R h = 235 nm and underwent a morphological transition after 21 minutes of UV irradiation to spherical micelles with R h = 27 nm, determined by dynamic light scattering and confirmed by transmission electron microscopy. At intermediate irradiation times (14–20 min), Nb 94 vesicles swelled to a larger size, but underwent a morphological transition over the course of hours or days, depending on the exact irradiation time. Nb 176 assembled into large compound vesicles with a hydrodynamic radius ( R h ) of 973 nm, as determined by dynamic light scattering (DLS), which decreased to ca. 700 nm after 300 minutes of UV irradiation with no apparent morphological transition. This study elucidates the mechanism and kinetics of the morphological transitions of block copolymer assemblies induced by a change in the hydrophobic volume fraction of the polymer. 
    more » « less