ABSTRACT Earthquake-induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging-derived roughness dating, and analysis of over 1000 deep-seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide inventory, we observe spatial and temporal evidence of landsliding related to the last major earthquake on the Seattle fault ∼1100 yr before present. We find spatial clusters of landslides that correlate with ground motions from recent 3D kinematic models of Seattle fault earthquakes. We also find temporal patterns in the landslide inventory that suggest earthquake-driven increases in landsliding. We compare the spatial and temporal landslide data with scenario-based ground motion models and find stronger evidence of the last major Seattle fault earthquake from this combined analysis than from spatial or temporal patterns alone. We also compare the landslide inventory with ground motions from different Seattle fault earthquake scenarios to determine the ground motion distributions that are most consistent with the landslide record. We find that earthquake scenarios that best match the clustering of ∼1100-year-old landslides produce the strongest shaking within a band that stretches from west to east across central Seattle as well as along the bluffs bordering the broader Puget Sound. Finally, we identify other landslide clusters (at 4.6–4.2 ka, 4.0–3.8 ka, 2.8–2.6 ka, and 2.2–2.0 ka) in the inventory which let us infer potential ground motions that may correspond to older Seattle fault earthquakes. Our method, which combines hindcasting of the surface response to the last major Seattle fault earthquake, using a roughness-aged landslide inventory with forecasts of modeled ground shaking from 3D seismic scenarios, showcases a powerful new approach to gleaning paleoseismic information from landscapes.
more »
« less
An evaluation of instructional strategies for improving student understanding of the elastic rebound theory of earthquakes with spatial visualization
Recent studies have identified an incomplete student understanding of how elastic rebound causes earthquakes. We hypothesized that realistic imaging of spatial patterns in ground motions over the course of the earthquake cycle would improve student understanding. Incorporating spatial change information in the form of both motion vectors and before-during-after contrasts should require most students to change an existing mental model or develop a new model. Using a quasi-experimental design, we developed instructional interventions for presenting variations in ground motion, including map views of fence bending and GPS velocity vectors. We measured the impact on student performance based on assignment questions related to the ground motion at different points in the earthquake cycle following several interventions in four undergraduate courses from introductory to upper level over 4 years. The first round of study was a free-response format and then multiple-choice answers were created from the most common answers, including new “worked example” questions inquiring about the reasons answers were correct or incorrect. We identified two key misconceptions based on student answer choices: (a) difficulty in recognizing velocity vector patterns when presented in a new reference frame, and (b) difficulty in reasoning that the fault must be locked for the strain to accumulate and produce an earthquake. Our analysis indicates the largest performance increases occur with simple animations that demonstrate the bending, breaking, and rebending of a fence, along with associated GPS vectors, plotted successively in different reference frames. This suggests difficulties in understanding elastic rebounds can be mitigated when spatial patterns are presented in a context with repeated opportunities to make predictions combined with animations to support mental models that connect the spatial patterns with ground movement.
more »
« less
- Award ID(s):
- 2025073
- PAR ID:
- 10561942
- Publisher / Repository:
- Taylor and Francis Group
- Date Published:
- Journal Name:
- Journal of Geoscience Education
- ISSN:
- 1089-9995
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Hazardous tsunamis are known to be generated predominantly at subduction zones. However, the 2018 Mw 7.5 Palu (Indonesia) earthquake on a strike-slip fault generated a tsunami that devastated the city of Palu. The mechanism by which this tsunami originated from such an earthquake is being debated. Here we present near-field ground motion (GPS) data confirming that the earthquake attained supershear speed, i.e. a rupture speed greater than the shear wave speed of the host medium. We subsequently study the effect of this supershear rupture on tsunami generation by coupling the ground motion to a 1-D non-linear shallow-water wave model accounting for both time-dependent bathymetric displacement and velocity. With the local bathymetric profile of Palu bay around a tidal station, our simulations reproduce the tsunami arrival and motions observed by CCTV cameras. We conclude that Mach (shock) fronts, generated by the supershear speed, interacted with the bathymetry and contributed to the tsunami.more » « less
-
Our research aims to improve the accuracy of Earthquake Early Warning (EEW) systems by means of machine learning. EEW systems are designed to detect and characterize medium and large earthquakes before their damaging effects reach a certain location. Traditional EEW methods based on seismometers fail to accurately identify large earthquakes due to their sensitivity to the ground motion velocity. The recently introduced high-precision GPS stations, on the other hand, are ineffective to identify medium earthquakes due to its propensity to produce noisy data. In addition, GPS stations and seismometers may be deployed in large numbers across different locations and may produce a significant volume of data consequently, affecting the response time and the robustness of EEW systems.In practice, EEW can be seen as a typical classification problem in the machine learning field: multi-sensor data are given in input, and earthquake severity is the classification result. In this paper, we introduce the Distributed Multi-Sensor Earthquake Early Warning (DMSEEW) system, a novel machine learning-based approach that combines data from both types of sensors (GPS stations and seismometers) to detect medium and large earthquakes. DMSEEW is based on a new stacking ensemble method which has been evaluated on a real-world dataset validated with geoscientists. The system builds on a geographically distributed infrastructure, ensuring an efficient computation in terms of response time and robustness to partial infrastructure failures. Our experiments show that DMSEEW is more accurate than the traditional seismometer-only approach and the combined-sensors (GPS and seismometers) approach that adopts the rule of relative strength.more » « less
-
Equilibrium is a challenging concept for many, largely because developing a deep conceptual understanding of equilibrium requires someone to be able to connect the motions and interactions of particles that cannot be physically observed with macroscopic observations. Particle level chemistry animations and simulations can support student connections of particle motion with macroscopic observations, but for topics such as equilibrium additional visuals such as graphs are typically present which add additional complexity. Helping students make sense of such visuals requires careful scaffolding to draw their attention to important features and help them make connections between representations ( e.g. , particle motion and graphical representations). Further, as students enter our classrooms with varying levels of background understanding, they may require more or less time working with such simulations or animations to develop the desired level of conceptual understanding. This paper describes the development and testing of activities that use the PhET simulation “Reactions and Rates” to introduce the concept of equilibrium as a student preclass activity either in the form of directly using the simulation or guided by an instructor through a screencast. The pre-post analysis of the two most recent implementations of these activities indicates that students show improved understanding of the core ideas underlying equilibrium regardless of instructor, institution, or type of instructional environment (face to face or remote). We also observed that students were more readily able to provide particle level explanations of changes in equilibrium systems as they respond to stresses (such as changes to concentration and temperature) if they have had prior course instruction on collision theory. Lastly, we observed that student answers to explain how an equilibrium will respond to an applied stress more often focus on either initial responses or longer-term stability of concentrations, not on both key aspects.more » « less
-
Local soil conditions depict an important role in regional seismic hazard assessments due to their influence on earthquake-induced ground shaking and deformation. The different levels of damage and site response at nearby locations correlate to site and geologic conditions variability, as has been reported after past earthquakes. Evaluating spatially variable ground motions (GMs) is key for earthquake reconnaissance efforts and regional seismic hazard assessments. This study focuses on the evaluation of spatial correlations in site parameters (e.g. time-averaged shear-wave velocity to a depth of 30 meters) at Kiban-Kyoshin Network (KiK-net), and their comparison to the observed spatial correlation residuals from ground motion intensity measures (IMs) from the Mw9.1 Tohoku earthquake. Current spatial correlation models treat site effects either as a fixed amplification factor or as randomized amplifications, but site effects are neither fixed nor random. Hence, geostatistical methods are used here to estimate spatial correlations between parameters that control site response and integrate their effects on resulting spatially variable ground motions. In this work, we evaluate the significance of the spatial correlation for different site parameters with respect to the GM amplification IMs residuals.more » « less
An official website of the United States government

