skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Triangle Counting
Listing and counting triangles in graphs is a key algorithmic kernel for network analyses including community detection, clustering coefficients, k-trusses, and triangle centrality. We design and implement a new serial algorithm for triangle counting that performs competitively with the fastest previous approaches on both real and synthetic graphs, such as those from the Graph500 Benchmark and the MIT/Amazon/IEEE Graph Challenge. The experimental results use the recently-launched Intel Xeon Platinum 8480+ and CPU Max 9480 processors.  more » « less
Award ID(s):
2109988
PAR ID:
10561950
Author(s) / Creator(s):
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-0860-0
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Boston, MA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Listing and counting triangles in graphs is a key algorithmic kernel for network analyses including community detection, clustering coefficients, k-trusses, and triangle centrality. We design and implement a new serial algorithm for triangle counting that performs competitively with the fastest previous approaches on both real and synthetic graphs, such as those from the Graph500 Benchmark and the MIT/Amazon/IEEE Graph Challenge. The experimental results use the recently-launched Intel Xeon Platinum 8480+ and CPU Max 9480 processors. 
    more » « less
  2. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  3. null (Ed.)
    Triangle counting is a fundamental technique in network analysis, that has received much attention in various input models. The vast majority of triangle counting algorithms are targeted to static graphs. Yet, many real-world graphs are directed and temporal, where edges come with timestamps. Temporal triangles yield much more information, since they account for both the graph topology and the timestamps. Temporal triangle counting has seen a few recent results, but there are varying definitions of temporal triangles. In all cases, temporal triangle patterns enforce constraints on the time interval between edges (in the triangle). We define a general notion (δ1,3,δ1,2,δ2,3)-temporal triangles that allows for separate time constraints for all pairs of edges. Our main result is a new algorithm, DOTTT (Degeneracy Oriented Temporal Triangle Totaler), that exactly counts all directed variants of (δ1,3,δ1,2,δ2,3)-temporal triangles. Using the classic idea of degeneracy ordering with careful combinatorial arguments, we can prove that DOTTT runs in O(mκlogm) time, where m is the number of (temporal) edges and κ is the graph degeneracy (max core number). Up to log factors, this matches the running time of the best static triangle counters. Moreover, this running time is better than existing. DOTTT has excellent practical behavior and runs twice as fast as existing state-of-the-art temporal triangle counters (and is also more general). For example, DOTTT computes all types of temporal queries in Bitcoin temporal network with half a billion edges in less than an hour on a commodity machine. 
    more » « less
  4. Counting and finding triangles in graphs is often used in real-world analytics to characterize cohesiveness and identify communities in graphs. In this paper, we propose the novel concept of a cover-edge set that can be used to find triangles more efficiently. We use a breadth-first search (BFS) to quickly generate a compact cover-edge set. Novel sequential and parallel triangle counting algorithms are presented that employ cover-edge sets. The sequential algorithm avoids unnecessary triangle-checking operations, and the parallel algorithm is communication-efficient. The parallel algorithm can asymptotically reduce communication on massive graphs such as from real social networks and synthetic graphs from the Graph500 Benchmark. In our estimate from massive-scale Graph500 graphs, our new parallel algorithm can reduce the communication on a scale 36 graph by 1156x and on a scale 42 graph by 2368x. 
    more » « less
  5. Counting and finding triangles in graphs is often used in real-world analytics to characterize cohesiveness and identify communities in graphs. In this paper, we propose the novel concept of a cover-edge set that can be used to find triangles more efficiently. We use a breadth-first search (BFS) to quickly generate a compact cover-edge set. Novel sequential and parallel triangle counting algorithms are presented that employ cover-edge sets. The sequential algorithm avoids unnecessary triangle-checking operations, and the parallel algorithm is communication-efficient. The parallel algorithm can asymptotically reduce communication on massive graphs such as from real social networks and synthetic graphs from the Graph500 Benchmark. In our estimate from massive-scale Graph500 graphs, our new parallel algorithm can reduce the communication on a scale 36 graph by 1156x and on a scale 42 graph by 2368x. 
    more » « less