skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Global oceanic diazotroph database version 2 and elevated estimate of global oceanic N 2 fixation

Abstract. Marine diazotrophs convert dinitrogen (N2) gas intobioavailable nitrogen (N), supporting life in the global ocean. In 2012, thefirst version of the global oceanic diazotroph database (version 1) waspublished. Here, we present an updated version of the database (version 2),significantly increasing the number of in situ diazotrophic measurements from13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cellabundance, and nifH gene copy abundance have increased by 184 %, 86 %, and809 %, respectively. Version 2 includes two new data sheets for the nifH genecopy abundance of non-cyanobacterial diazotrophs and cell-specific N2fixation rates. The measurements of N2 fixation rates approximatelyfollow a log-normal distribution in both version 1 and version 2. However,version 2 considerably extends both the left and right tails of thedistribution. Consequently, when estimating global oceanic N2 fixationrates using the geometric means of different ocean basins, version 1 andversion 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; rangesbased on one geometric standard error). In contrast, when using arithmeticmeans, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1(74±7 Tg N yr−1). Specifically, substantial rate increases areestimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics,and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in theIndian Ocean to be 35±14 Tg N yr−1, which could not be estimatedusing version 1 due to limited data availability. Furthermore, a comparisonof N2 fixation rates obtained through different measurement methods atthe same months, locations, and depths reveals that the conventional15N2 bubble method yields lower rates in 69 % cases compared tothe new 15N2 dissolution method. This updated version of thedatabase can facilitate future studies in marine ecology andbiogeochemistry. The database is stored at the Figshare repository(https://doi.org/10.6084/m9.figshare.21677687; Shao etal., 2022).

 
more » « less
Award ID(s):
1756517
PAR ID:
10561979
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Earth System Science Data
Volume:
15
Issue:
8
ISSN:
1866-3516
Page Range / eLocation ID:
3673 to 3709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200–4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36–214 fmol N cell−1 d−1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.

     
    more » « less
  2. Abstract

    Nitrogen availability limits marine productivity across large ocean regions. Diazotrophs can supply new nitrogen to the marine environment via nitrogen (N2) fixation, relieving nitrogen limitation. The distributions of diazotrophs and N2 fixation have been hypothesized to be generally controlled by temperature, phosphorus, and iron availability in the global ocean. However, even in the North Atlantic where most research on diazotrophs and N2 fixation has taken place, environmental controls remain contentious. Here we measure diazotroph composition, abundance, and activity at high resolution using newly developed underway sampling and sensing techniques. We capture a diazotrophic community shift from Trichodesmium to UCYN-A between the oligotrophic, warm (25–29 °C) Sargasso Sea and relatively nutrient-enriched, cold (13–24 °C) subpolar and eastern American coastal waters. Meanwhile, N2 fixation rates measured in this study are among the highest ever recorded globally and show significant increase with phosphorus availability across the transition from the Gulf Stream into subpolar and coastal waters despite colder temperatures and higher nitrate concentrations. Transcriptional patterns in both Trichodesmium and UCYN-A indicate phosphorus stress in the subtropical gyre. Over this iron-replete transect spanning the western North Atlantic, our results suggest that temperature is the major factor controlling the diazotrophic community structure while phosphorous drives N2 fixation rates. Overall, the occurrence of record-high UCYN-A abundance and peak N2 fixation rates in the cold coastal region where nitrate concentrations are highest (~200 nM) challenges current paradigms on what drives the distribution of diazotrophs and N2 fixation.

     
    more » « less
  3. Abstract. The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63±0.07nmolNL−1d−1) but consistently detected across all depths and stations, representing ∼ 6–88% of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area and/or areas downstream of water mass circulation.

     
    more » « less
  4. Abstract

    The unicellular diazotrophic cyanobacterium Crocosphaera contributes significantly to fixed nitrogen inputs in the oligotrophic ocean. In the western tropical South Pacific Ocean (WTSP), these diazotrophs abound thanks to the phosphorus-rich waters provided by the South Equatorial Current, and iron provided aeolian and subsurface volcanic activity. East of the WTSP, the South Pacific Gyre (SPG) harbors the most oligotrophic and transparent waters of the world's oceans, where only heterotrophic diazotrophs have been reported before. Here, in the SPG, we detected unexpected accumulation of Crocosphaera at 50 m with peak abundances of 5.26 × 105 nifH gene copies l–1. The abundance of Crocosphaera at 50 m was in the same order of magnitude as those detected westwards in the WTSP and represented 100% of volumetric N2 fixation rates. This accumulation at 50 m was likely due to a deeper penetration of UV light in the clear waters of the SPG being detrimental for Crocosphaera growth and N2 fixation activity. Nutrient and trace metal addition experiments did not induce any significant changes in N2 fixation or Crocosphaera abundance, indicating that this population was not limited by the resources tested and could develop in high numbers despite the oligotrophic conditions. Our findings indicate that the distribution of Crocosphaera can extend into subtropical gyres and further understanding of their controlling factors is needed.

     
    more » « less
  5. Abstract

    Biological dinitrogen (N2) fixation supplies nitrogen to the oceans, supporting primary productivity, and is carried out by some bacteria and archaea referred to as diazotrophs. Cyanobacteria are conventionally considered to be the major contributors to marine N2 fixation, but non-cyanobacterial diazotrophs (NCDs) have been shown to be distributed throughout ocean ecosystems. However, the biogeochemical significance of marine NCDs has not been demonstrated. This review synthesizes multiple datasets, drawing from cultivation-independent molecular techniques and data from extensive oceanic expeditions, to provide a comprehensive view into the diversity, biogeography, ecophysiology, and activity of marine NCDs. A NCD nifH gene catalog was compiled containing sequences from both PCR-based and PCR-free methods, identifying taxa for future studies. NCD abundances from a novel database of NCD nifH-based abundances were colocalized with environmental data, unveiling distinct distributions and environmental drivers of individual taxa. Mechanisms that NCDs may use to fuel and regulate N2 fixation in response to oxygen and fixed nitrogen availability are discussed, based on a metabolic analysis of recently available Tara Oceans expedition data. The integration of multiple datasets provides a new perspective that enhances understanding of the biology, ecology, and biogeography of marine NCDs and provides tools and directions for future research.

     
    more » « less