skip to main content


This content will become publicly available on November 1, 2025

Title: Quantifying Evidence for—and against—Granger Causality with Bayes Factors
Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis testing framework. In this framework, we are limited to rejecting the null hypothesis or failing to reject the null -- we can never validly accept the null hypothesis of no Granger causality. This is poorly suited for many common purposes, including evidence integration, feature selection, and other cases where it is useful to express evidence against, rather than for, the existence of an association. Here we derive and implement the Bayes factor for Granger causality in a multilevel modeling framework. This Bayes factor summarizes information in the data in terms of a continuously scaled evidence ratio between the presence of Granger causality and its absence. We also introduce this procedure for the multilevel generalization of Granger causality testing. This facilitates inference when information is scarce or noisy or if we are interested primarily in population-level trends. We illustrate our approach with an application on exploring causal relationships in affect using a daily life study.  more » « less
Award ID(s):
2051186
PAR ID:
10562000
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Multivariate Behavioral Research
Volume:
59
Issue:
6
ISSN:
0027-3171
Page Range / eLocation ID:
1148 to 1158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The law expects jurors to weigh the facts and evidence of a case to inform the decision with which they are charged. However, evidence in legal cases is becoming increasingly complicated, and studies have raised questions about laypeople’s abilities to understand and use complex evidence to inform decisions. Compared to other studies that have looked at general evidence comprehension and expert credibility (e.g. Schweitzer & Saks, 2012), this experimental study investigated whether jurors can appropriately weigh strong vs. weak DNA evidence without special assistance. That is, without help to understand when DNA evidence is relatively weak, are jurors sensitive to the strength of weak DNA evidence as compared to strong DNA evidence? Responses from jury-eligible participants (N=346) were collected from Amazon Mechanical Turk (MTurk). Participants were presented with a summary of a robbery case before being asked a short questionnaire related to verdict preference and evidence comprehension. (Data is from the pilot of experiment 2 for the grant project). We hypothesized participants would not be able to distinguish high- from low-quality DNA evidence. We analyzed the data using Bayes Factors, which allows for directly testing the null hypothesis (Zyphur & Oswald, 2013). A Bayes Factor of 4-8 (depending on the priors used) was found supporting the null for participants’ rating of low vs. high quality scientific evidence. A Bayes Factor of 4 means that the null is four times as probable as an alternative hypothesis. Participants tended to rate the DNA evidence as “high quality” no matter the condition they were in. The Bayes Factor of 4-8 in this case gives good reason to believe that jury members are unable to discern what constitutes low quality DNA evidence without assistance. If jurors are unable to distinguish between different qualities of evidence, or if they are unaware that they may have to, they could give greater weight to low quality scientific evidence than is warranted. The current study supports the hypothesis that jurors have trouble distinguishing between complicated high vs. low quality evidence without help. Further attempts will be made to discover ways of presenting DNA evidence that could better calibrate jurors in their decisions. These future directions involve larger sample sizes in which jury-eligible participants will complete the study in person. Instead of reading about the evidence, they will watch a filmed mock jury trial. This plan also involves jury deliberation which will provide additional knowledge about how jurors come to conclusions as a group about different qualities of evidence. Acknowledging the potential issues in jury trials and working to solve these problems is a vital step in improving our justice system. 
    more » « less
  2. Abstract

    Climate system teleconnections are crucial for improving climate predictability, but difficult to quantify. Standard approaches to identify teleconnections are often based on correlations between time series. Here we present a novel method leveraging Granger causality, which can infer/detect relationships between any two fields. We compare teleconnections identified by correlation and Granger causality at different timescales. We find that both Granger causality and correlation consistently recover known seasonal precipitation responses to the sea surface temperature pattern associated with the El Niño Southern Oscillation. Such findings are robust across multiple time resolutions. In addition, we identify candidates for unexplored teleconnection responses.

     
    more » « less
  3. Abstract

    This paper presents Granger mediation analysis, a new framework for causal mediation analysis of multiple time series. This framework is motivated by a functional magnetic resonance imaging (fMRI) experiment where we are interested in estimating the mediation effects between a randomized stimulus time series and brain activity time series from two brain regions. The independent observation assumption is thus unrealistic for this type of time-series data. To address this challenge, our framework integrates two types of models: causal mediation analysis across the mediation variables, and vector autoregressive (VAR) models across the temporal observations. We use “Granger” to refer to VAR correlations modeled in this paper. We further extend this framework to handle multilevel data, in order to model individual variability and correlated errors between the mediator and the outcome variables. Using Rubin's potential outcome framework, we show that the causal mediation effects are identifiable under our time-series model. We further develop computationally efficient algorithms to maximize our likelihood-based estimation criteria. Simulation studies show that our method reduces the estimation bias and improves statistical power, compared with existing approaches. On a real fMRI data set, our approach quantifies the causal effects through a brain pathway, while capturing the dynamic dependence between two brain regions.

     
    more » « less
  4. Granger causality and its learning algorithms have been widely used in many disciplines to study cause-effect relationship among time series variables. In this paper, we address computing challenges of state-of-art Granger causality learning algorithms, specially when facing increasing dimensionality of available datasets. We study how to leverage gradient boosting meta machine learning techniques to achieve accurate causality discovery and big data parallel techniques for efficient causality discovery from large temporal datasets. We propose two main algorithms for gradient boosting based causality learning, and parallel gradient boosting based causality learning. Our experiments show our proposed algorithms can achieve efficient learning in distributed environments with good learning accuracy. 
    more » « less
  5. Granger causality is among the widely used data-driven approaches for causal analysis of time series data with applications in various areas including economics, molecular biology, and neuroscience. Two of the main challenges of this methodology are: 1) over-fitting as a result of limited data duration, and 2) correlated process noise as a confounding factor, both leading to errors in identifying the causal influences. Sparse estimation via the LASSO has successfully addressed these challenges for parameter estimation. However, the classical statistical tests for Granger causality resort to asymptotic analysis of ordinary least squares, which require long data duration to be useful and are not immune to confounding effects. In this work, we address this disconnect by introducing a LASSO-based statistic and studying its non-asymptotic properties under the assumption that the true models admit sparse autoregressive representations. We establish fundamental limits for reliable identification of Granger causal influences using the proposed LASSO-based statistic. We further characterize the false positive error probability and test power of a simple thresholding rule for identifying Granger causal effects and provide two methods to set the threshold in a data-driven fashion. We present simulation studies and application to real data to compare the performance of our proposed method to ordinary least squares and existing LASSO-based methods in detecting Granger causal influences, which corroborate our theoretical results. 
    more » « less