skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting Climate Teleconnections With Granger Causality
Abstract Climate system teleconnections are crucial for improving climate predictability, but difficult to quantify. Standard approaches to identify teleconnections are often based on correlations between time series. Here we present a novel method leveraging Granger causality, which can infer/detect relationships between any two fields. We compare teleconnections identified by correlation and Granger causality at different timescales. We find that both Granger causality and correlation consistently recover known seasonal precipitation responses to the sea surface temperature pattern associated with the El Niño Southern Oscillation. Such findings are robust across multiple time resolutions. In addition, we identify candidates for unexplored teleconnection responses.  more » « less
Award ID(s):
1931641
PAR ID:
10447316
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis testing framework. In this framework, we are limited to rejecting the null hypothesis or failing to reject the null -- we can never validly accept the null hypothesis of no Granger causality. This is poorly suited for many common purposes, including evidence integration, feature selection, and other cases where it is useful to express evidence against, rather than for, the existence of an association. Here we derive and implement the Bayes factor for Granger causality in a multilevel modeling framework. This Bayes factor summarizes information in the data in terms of a continuously scaled evidence ratio between the presence of Granger causality and its absence. We also introduce this procedure for the multilevel generalization of Granger causality testing. This facilitates inference when information is scarce or noisy or if we are interested primarily in population-level trends. We illustrate our approach with an application on exploring causal relationships in affect using a daily life study. 
    more » « less
  2. Abstract Global climate change has been shown to cause longer, more intense, and frequent heatwaves, of which anthropogenic stressors concentrated in urban areas are a critical contributor. In this study, we investigate the causal interactions during heatwaves across 520 urban sites in the U.S. combining complex network and causal analysis. The presence of regional mediators is manifest in the constructed causal networks, together with long-range teleconnections. More importantly, megacities, such as New York City and Chicago, are causally connected with most of other cities and mediate the structure of urban networks during heatwaves. We also identified a significantly positive correlation between the causality strength and the total populations in megacities. These findings corroborate the contribution of human activities e.g., anthropogenic emissions of greenhouse gases or waste heat, to urban heatwaves. The emergence of teleconnections and supernodes are informative for the prediction and adaptation to heatwaves under global climate change. 
    more » « less
  3. ABSTRACT Arctic–midlatitude teleconnections are complex and multifaceted. By design, targeted modeling studies typically focus only on one direction of influence—usually, the midlatitude atmospheric response to a changing Arctic. The two-way, coupled feedbacks between the Arctic and the midlatitude circulation on submonthly time scales are explored using a regularized regression model formulated around Granger causality. The regularized regression model indicates that there are regions in which Arctic temperature drives a midlatitude circulation response, and regions in which the midlatitude circulation drives a response in the Arctic; however, these regions rarely overlap. In many regions, on submonthly time scales, the midlatitude circulation drives Arctic temperature variability, highlighting the important role the midlatitude circulation can play in impacting the Arctic. In particular, the regularized regression model results support recent work that indicates that the observed high pressure anomalies over Eurasia drive a significant response in the Arctic on submonthly time scales, rather than being driven by the Arctic. 
    more » « less
  4. Morrison, Abigail (Ed.)
    Assessing directional influences between neurons is instrumental to understand how brain circuits process information. To this end, Granger causality, a technique originally developed for time-continuous signals, has been extended to discrete spike trains. A fundamental assumption of this technique is that the temporal evolution of neuronal responses must be due only to endogenous interactions between recorded units, including self-interactions. This assumption is however rarely met in neurophysiological studies, where the response of each neuron is modulated by other exogenous causes such as, for example, other unobserved units or slow adaptation processes. Here, we propose a novel point-process Granger causality technique that is robust with respect to the two most common exogenous modulations observed in real neuronal responses: within-trial temporal variations in spiking rate and between-trial variability in their magnitudes. This novel method works by explicitly including both types of modulations into the generalized linear model of the neuronal conditional intensity function (CIF). We then assess the causal influence of neuron i onto neuron j by measuring the relative reduction of neuron j ’s point process likelihood obtained considering or removing neuron i . CIF’s hyper-parameters are set on a per-neuron basis by minimizing Akaike’s information criterion. In synthetic data sets, generated by means of random processes or networks of integrate-and-fire units, the proposed method recovered with high accuracy, sensitivity and robustness the underlying ground-truth connectivity pattern. Application of presently available point-process Granger causality techniques produced instead a significant number of false positive connections. In real spiking responses recorded from neurons in the monkey pre-motor cortex (area F5), our method revealed many causal relationships between neurons as well as the temporal structure of their interactions. Given its robustness our method can be effectively applied to real neuronal data. Furthermore, its explicit estimate of the effects of unobserved causes on the recorded neuronal firing patterns can help decomposing their temporal variations into endogenous and exogenous components. 
    more » « less
  5. Granger causality and its learning algorithms have been widely used in many disciplines to study cause-effect relationship among time series variables. In this paper, we address computing challenges of state-of-art Granger causality learning algorithms, specially when facing increasing dimensionality of available datasets. We study how to leverage gradient boosting meta machine learning techniques to achieve accurate causality discovery and big data parallel techniques for efficient causality discovery from large temporal datasets. We propose two main algorithms for gradient boosting based causality learning, and parallel gradient boosting based causality learning. Our experiments show our proposed algorithms can achieve efficient learning in distributed environments with good learning accuracy. 
    more » « less