skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Interdigitated Gear-Shaped Screen-Printed Electrode Using G-PANI Ink for Sensitive Electrochemical Detection of Dopamine
In this research, a novel interdigitated gear-shaped, graphene-based electrochemical biosensor was developed for the detection of dopamine (DA). The sensor’s innovative design improves the active surface area by 94.52% and 57% compared to commercially available Metrohm DropSens 110 screen-printed sensors and printed circular sensors, respectively. The screen-printed electrode was fabricated using laser processing and modified with graphene polyaniline conductive ink (G-PANI) to enhance its electrochemical properties. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) were employed to characterize the physiochemical properties of the sensor. Dopamine, a neurotransmitter crucial for several body functions, was detected within a linear range of 0.1–100 µM, with a Limit of Detection (LOD) of 0.043 µM (coefficient of determination, R2 = 0.98) in phosphate-buffer saline (PBS) with ferri/ferrocyanide as the redox probe. The performance of the sensor was evaluated using cyclic voltammetry (CV) and Chronoamperometry, demonstrating high sensitivity and selectivity. The interdigitated gear-shaped design exhibited excellent repeatability, with a relative standard deviation (RSD) of 1.2% (n = 4) and reproducibility, with an RSD of 2.3% (n = 4). In addition to detecting dopamine in human serum, the sensor effectively distinguished dopamine in a ternary mixture containing uric acid (UA) and ascorbic acid (AA). Overall, this novel sensor design offers a reliable, disposable, and cost-effective solution for dopamine detection, with potential applications in medical diagnostics and neurological research.  more » « less
Award ID(s):
2138574
PAR ID:
10562005
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Sensor and Actuator Networks
Volume:
13
Issue:
6
ISSN:
2224-2708
Page Range / eLocation ID:
84
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The central nervous system’s (CNS) dopaminergic system dysfunction has been linked to neurological illnesses like schizophrenia and Parkinson’s disease. As a result, sensitive and selective detection of dopamine is critical for the early diagnosis of illnesses associated with aberrant dopamine levels. In this research, we have investigated the performance of electrochemical screen-printed sensors for different concentrations of dopamine detection using graphene-based conductive PEDOT: PSS(G-PEDOT: PSS) and Polyaniline(G-PANI) inks on the working electrode and compared the sensitivity. SEM characterization technique has been performed to visualize the microstructures of the proposed inks. We have investigated cyclic voltammetry (CV) electrochemical techniques with ferri/ferrocyanide redox couple to assess the efficiency of the designed electrodes in detecting dopamine. G-PANI ink has shown to have better LOD and stability to detect dopamine with screen-printed electrodes. Further, we have also studied electrochemical analysis for the selective detection of dopamine without the interference of Ascorbic Acid (AA). 
    more » « less
  2. In this research, a novel electrochemical biosensor is proposed based on inducing graphene formation on polyimide substrate via laser engraving. Graphene polyaniline (G-PANI) conductive ink was synthesized by planetary mixing and applied to the working zone of the developed sensor to effectively enhance the electrical signals. The laser-induced graphene (LIG) sensor was used to detect alpha-fetoprotein (AFP) and 17β-Estradiol (E2) in the phosphate buffer saline (PBS) buffer and human serum. The electrochemical performance of the biosensor in determining these biomarkers was investigated by differential pulse voltammetry (DPV) and chronoamperometry (CA). In a buffer environment, alpha-fetoprotein (AFP) and 17β-Estradiol detection range were 4–400 ng/mL and 20–400 pg/mL respectively. The experimental results showed a limit of detection (LOD) of 1.15 ng/mL and 0.96 pg/mL for AFP and estrogen, respectively, with an excellent linear range (R2 = 0.98 and 0.99). In addition, the designed sensor was able to detect these two types of biomarkers in human serum successfully. The proposed sensor exhibited excellent reproducibility, repeatability, and good stability (relative standard deviation, RSD = 0.96%, 1.12%, 2.92%, respectively). The electrochemical biosensor proposed herein is easy to prepare and can be successfully used for low-cost, rapid detection of AFP and E2. This approach provides a promising platform for clinical detection and is advantageous to healthcare applications. 
    more » « less
  3. null (Ed.)
    Light-addressable electrochemical sensors (LAESs) are a class of sensors that use light to activate an electrochemical reaction on the surface of a semiconducting photoelectrode. Here, we investigate semiconductor/metal (Schottky) junctions formed between n-type Si and Au nanoparticles as lightaddressable electrochemical sensors. To demonstrate this concept, we prepared n-Si/Au nanoparticle Schottky junctions by electrodeposition and characterized them using scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. We found that the sensors behaved almost identically to Au disk electrodes for the oxidation of an outer-sphere redox couple (ferrocene methanol) and two inner-sphere redox couples (potassium ferrocyanide and dopamine). In buffered dopamine solutions, we observed broad linear ranges and submicromolar detection limits. We then used local illumination to generate a virtual array of electrochemical sensors for dopamine as a strategy for circumventing sensor fouling, which is a persistent problem for electrochemical dopamine sensors. By locally illuminating a small portion of the photoelectrode, many measurements of fouling analytes can be made on a single sensor with a single electrical connection by moving the light beam to a fresh area of the sensor. Altogether, these results pave the way for Schottky junction light-addressable electrochemical sensors to be useful for a number of interesting future applications in chemical and biological sensing. 
    more » « less
  4. null (Ed.)
    Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications. 
    more » « less
  5. Neurotransmitters are small molecules involved in neuronal signaling and can also serve as stress biomarkers.1Their abnormal levels have been also proposed to be indicative of several neurological diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington disease, among others. Hence, measuring their levels is highly important for early diagnosis, therapy, and disease prognosis. In this work, we investigate facile functionalization methods to tune and enhance sensitivity of printed graphene sensors to neurotransmitters. Sensors based on direct laser scribing and screen-printed graphene ink are studied. These printing methods offer ease of prototyping and scalable fabrication at low cost. The effect of functionalization of laser induced graphene (LIG) by electrodeposition and solution-based deposition of TMDs (molybdenum disulfide2and tungsten disulfide) and metal nanoparticles is studied. For different processing methods, electrochemical characteristics (such as electrochemically active surface area: ECSA and heterogenous electron transfer rate: k0) are extracted and correlated to surface chemistry and defect density obtained respectively using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. These functionalization methods are observed to directly impact the sensitivity and limit of detection (LOD) of the graphene sensors for the studied neurotransmitters. For example, as compared to bare LIG, it is observed that electrodeposition of MoS2on LIG improves ECSA by 3 times and k0by 1.5 times.3Electrodeposition of MoS2also significantly reduces LOD of serotonin and dopamine in saliva, enabling detection of their physiologically relevant concentrations (in pM-nM range). In addition, chemical treatment of LIG sensors is carried out in the form of acetic acid treatment. Acetic acid treatment has been shown previously to improve C-C bonds improving the conductivity of LIG sensors.4In our work, in particular, acetic acid treatment leads to larger improvement of LOD of norepinephrine compared to MoS2electrodeposition. In addition, we investigate the effect of plasma treatment to tune the sensor response by modifying the defect density and chemistry. For example, we find that oxygen plasma treatment of screen-printed graphene ink greatly improves LOD of norepinephrine up to three orders of magnitude, which may be attributed to the increased defects and oxygen functional groups on the surface as evident by XPS measurements. Defects are known to play a key role in enhancing the sensitivity of 2D materials to surface interactions, and have been explored in tuning/enhancing the sensor sensitivity.5Building on our previous work,3we apply a custom machine learning-based data processing method to further improve that sensitivity and LOD, and also to automatically benchmark different molecule-material pairs. Future work includes expanding the plasma chemistry and conditions, studying the effect of precursor mixture in laser-induced solution-based functionalization, and understanding the interplay between molecule-material system. Work is also underway to improve the machine learning model by using nonlinear learning models such as neural networks to improve the sensor sensitivity, selectivity, and robustness. ReferencesA. J. Steckl, P. Ray, (2018), doi:10.1021/acssensors.8b00726.Y. Lei, D. Butler, M. C. Lucking, F. Zhang, T. Xia, K. Fujisawa, T. Granzier-Nakajima, R. Cruz-Silva, M. Endo, H. Terrones, M. Terrones, A. Ebrahimi,Sci. Adv.6, 4250–4257 (2020).V. Kammarchedu, D. Butler, A. Ebrahimi,Anal. Chim. Acta.1232, 340447 (2022).H. Yoon, J. Nah, H. Kim, S. Ko, M. Sharifuzzaman, S. C. Barman, X. Xuan, J. Kim, J. Y. Park,Sensors Actuators B Chem.311, 127866 (2020).T. Wu, A. Alharbi, R. Kiani, D. Shahrjerdi,Adv. Mater.31, 1–12 (2019). 
    more » « less